BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22993509)

  • 21. Computational simulation of human upper airway collapse using a pressure-/state-dependent model of genioglossal muscle contraction under laminar flow conditions.
    Huang Y; Malhotra A; White DP
    J Appl Physiol (1985); 2005 Sep; 99(3):1138-48. PubMed ID: 15831800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.
    Valentin J; Sprenger M; Pflüger D; Röhrle O
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS.
    Heidlauf T; Röhrle O
    Comput Math Methods Med; 2013; 2013():517287. PubMed ID: 24348739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the role of Ca
    Karami M; Calvo B; Zohoor H; Firoozbakhsh K; Grasa J
    J Theor Biol; 2019 Jan; 461():76-83. PubMed ID: 30340054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A motor unit-based model of muscle fatigue.
    Potvin JR; Fuglevand AJ
    PLoS Comput Biol; 2017 Jun; 13(6):e1005581. PubMed ID: 28574981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A force-similarity model of the activated muscle is able to predict primary locomotor functions.
    Kokshenev VB
    J Biomech; 2008; 41(4):912-5. PubMed ID: 18154975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model.
    El Bojairami I; Driscoll M
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34729583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction.
    Hernández-Gascón B; Grasa J; Calvo B; Rodríguez JF
    J Theor Biol; 2013 Oct; 335():108-18. PubMed ID: 23820034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of active skeletal muscles: a 3D continuum approach incorporating multiple muscle interactions.
    Zeng W; Hume DR; Lu Y; Fitzpatrick CK; Babcock C; Myers CA; Rullkoetter PJ; Shelburne KB
    Front Bioeng Biotechnol; 2023; 11():1153692. PubMed ID: 37274172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale Hill-type modeling of the mechanical muscle behavior driven by the neural drive in isometric conditions.
    Carriou V; Boudaoud S; Laforet J; Mendes A; Canon F; Guiraud D
    Comput Biol Med; 2019 Dec; 115():103480. PubMed ID: 31629271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mass-flowing muscle model with shape restrictive soft tissues: correlation with sonoelastography.
    Guo J; Sun Y; Hao Y; Cui L; Ren G
    Biomech Model Mechanobiol; 2020 Jun; 19(3):911-926. PubMed ID: 31853723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural control of muscle force: indications from a simulation model.
    Contessa P; De Luca CJ
    J Neurophysiol; 2013 Mar; 109(6):1548-70. PubMed ID: 23236008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On a phenomenological model for fatigue effects in skeletal muscles.
    Böl M; Stark H; Schilling N
    J Theor Biol; 2011 Jul; 281(1):122-32. PubMed ID: 20211632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy.
    Caillet AH; Phillips ATM; Farina D; Modenese L
    PLoS Comput Biol; 2023 Dec; 19(12):e1011606. PubMed ID: 38060619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling of damage in the hierarchical microstructure of skeletal muscles.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2022 Oct; 134():105386. PubMed ID: 35952441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.