These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22993509)

  • 41. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding.
    Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D
    J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
    Perreault EJ; Heckman CJ; Sandercock TG
    J Biomech; 2003 Feb; 36(2):211-8. PubMed ID: 12547358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation.
    Crago PE; Makowski NS; Cole NM
    J Neural Eng; 2014 Oct; 11(5):056022. PubMed ID: 25242203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A homogenization model of the Voigt type for skeletal muscle.
    Spyrou LA; Agoras M; Danas K
    J Theor Biol; 2017 Feb; 414():50-61. PubMed ID: 27884495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulating a dual-array electrode configuration to investigate the influence of skeletal muscle fatigue following functional electrical stimulation.
    Kim JH; Trew ML; Pullan AJ; Röhrle O
    Comput Biol Med; 2012 Sep; 42(9):915-24. PubMed ID: 22841365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics.
    Röhrle O; Yavuz UŞ; Klotz T; Negro F; Heidlauf T
    Wiley Interdiscip Rev Syst Biol Med; 2019 Nov; 11(6):e1457. PubMed ID: 31237041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computationally efficient models of neuromuscular recruitment and mechanics.
    Song D; Raphael G; Lan N; Loeb GE
    J Neural Eng; 2008 Jun; 5(2):175-84. PubMed ID: 18441419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional structure of cat tibialis anterior motor units.
    Roy RR; Garfinkel A; Ounjian M; Payne J; Hirahara A; Hsu E; Edgerton VR
    Muscle Nerve; 1995 Oct; 18(10):1187-95. PubMed ID: 7659113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input.
    Castronovo AM; Negro F; Conforto S; Farina D
    J Appl Physiol (1985); 2015 Dec; 119(11):1337-46. PubMed ID: 26404614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On a three-dimensional constitutive model for history effects in skeletal muscles.
    Seydewitz R; Siebert T; Böl M
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1665-1681. PubMed ID: 31102082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [MAFbx expression after free muscle transplantation and its relationship with muscle function].
    Liu A; Yu D; Zhang Y; Zhu L; Chen H; Ren A; Fang C; Cai Z; Jiang H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Aug; 23(8):969-73. PubMed ID: 19728616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anatomically based lower limb nerve model for electrical stimulation.
    Kim JH; Davidson JB; Röhrle O; Soboleva TK; Pullan AJ
    Biomed Eng Online; 2007 Dec; 6():48. PubMed ID: 18086315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A continuum model for excitation-contraction of smooth muscle under finite deformations.
    Sharifimajd B; Stålhand J
    J Theor Biol; 2014 Aug; 355():1-9. PubMed ID: 24657629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Divergent response of low- versus high-threshold motor units to experimental muscle pain.
    Martinez-Valdes E; Negro F; Farina D; Falla D
    J Physiol; 2020 Jun; 598(11):2093-2108. PubMed ID: 32187684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model of the rat medial gastrocnemius muscle based on inputs to motoneurons and on an algorithm for prediction of the motor unit force.
    Raikova R; Celichowski J; Angelova S; Krutki P
    J Neurophysiol; 2018 Oct; 120(4):1973-1987. PubMed ID: 30020845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution from motor unit firing adaptations and muscle coactivation during fatigue.
    Contessa P; Letizi J; De Luca G; Kline JC
    J Neurophysiol; 2018 Jun; 119(6):2186-2193. PubMed ID: 29537913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.