These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 22993659)
1. Different roles of TGF-β in the multi-lineage differentiation of stem cells. Wang MK; Sun HQ; Xiang YC; Jiang F; Su YP; Zou ZM World J Stem Cells; 2012 May; 4(5):28-34. PubMed ID: 22993659 [TBL] [Abstract][Full Text] [Related]
2. Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Santibanez JF; Kocic J Biomol Concepts; 2012 Oct; 3(5):429-45. PubMed ID: 25436548 [TBL] [Abstract][Full Text] [Related]
3. TGF-β-operated growth inhibition and translineage commitment into smooth muscle cells of periodontal ligament-derived endothelial progenitor cells through Smad- and p38 MAPK-dependent signals. Yoshida M; Okubo N; Chosa N; Hasegawa T; Ibi M; Kamo M; Kyakumoto S; Ishisaki A Int J Biol Sci; 2012; 8(7):1062-74. PubMed ID: 22949889 [TBL] [Abstract][Full Text] [Related]
4. BMP-3 promotes mesenchymal stem cell proliferation through the TGF-beta/activin signaling pathway. Stewart A; Guan H; Yang K J Cell Physiol; 2010 Jun; 223(3):658-66. PubMed ID: 20143330 [TBL] [Abstract][Full Text] [Related]
5. Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Ruscetti FW; Akel S; Bartelmez SH Oncogene; 2005 Aug; 24(37):5751-63. PubMed ID: 16123808 [TBL] [Abstract][Full Text] [Related]
6. Tgf-Beta signaling in development. Kitisin K; Saha T; Blake T; Golestaneh N; Deng M; Kim C; Tang Y; Shetty K; Mishra B; Mishra L Sci STKE; 2007 Aug; 2007(399):cm1. PubMed ID: 17699101 [TBL] [Abstract][Full Text] [Related]
7. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Inman GJ; Nicolás FJ; Callahan JF; Harling JD; Gaster LM; Reith AD; Laping NJ; Hill CS Mol Pharmacol; 2002 Jul; 62(1):65-74. PubMed ID: 12065756 [TBL] [Abstract][Full Text] [Related]
8. Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells. Bondestam J; Kaivo-oja N; Kallio J; Groome N; Hydén-Granskog C; Fujii M; Moustakas A; Jalanko A; ten Dijke P; Ritvos O Mol Cell Endocrinol; 2002 Sep; 195(1-2):79-88. PubMed ID: 12354674 [TBL] [Abstract][Full Text] [Related]
9. RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. Chen S; Crawford M; Day RM; Briones VR; Leader JE; Jose PA; Lechleider RJ J Biol Chem; 2006 Jan; 281(3):1765-70. PubMed ID: 16317010 [TBL] [Abstract][Full Text] [Related]
10. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. Zhou S; Eid K; Glowacki J J Bone Miner Res; 2004 Mar; 19(3):463-70. PubMed ID: 15040835 [TBL] [Abstract][Full Text] [Related]
11. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. Horowitz JC; Lee DY; Waghray M; Keshamouni VG; Thomas PE; Zhang H; Cui Z; Thannickal VJ J Biol Chem; 2004 Jan; 279(2):1359-67. PubMed ID: 14576166 [TBL] [Abstract][Full Text] [Related]
12. Cooperation of liver cells in health and disease. Kmieć Z Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749 [TBL] [Abstract][Full Text] [Related]
13. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Marone M; Scambia G; Bonanno G; Rutella S; de Ritis D; Guidi F; Leone G; Pierelli L Leukemia; 2002 Jan; 16(1):94-105. PubMed ID: 11840268 [TBL] [Abstract][Full Text] [Related]
14. Transforming growth factor-beta- and Activin-Smad signaling pathways are activated at distinct maturation stages of the thymopoeisis. Rosendahl A; Speletas M; Leandersson K; Ivars F; Sideras P Int Immunol; 2003 Dec; 15(12):1401-14. PubMed ID: 14645149 [TBL] [Abstract][Full Text] [Related]
15. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells. Arias M; Lahme B; Van de Leur E; Gressner AM; Weiskirchen R Cell Growth Differ; 2002 Jun; 13(6):265-73. PubMed ID: 12114216 [TBL] [Abstract][Full Text] [Related]
16. Microarray analysis of bone morphogenetic protein, transforming growth factor beta, and activin early response genes during osteoblastic cell differentiation. de Jong DS; van Zoelen EJ; Bauerschmidt S; Olijve W; Steegenga WT J Bone Miner Res; 2002 Dec; 17(12):2119-29. PubMed ID: 12469906 [TBL] [Abstract][Full Text] [Related]
17. [Role of cytokine signaling pathways of the transforming growth factor-beta (TGF-beta) family in the regulation of hematopoiesis]. Fuchs O Cas Lek Cesk; 2002 Sep; 141 Suppl():18-22. PubMed ID: 12428417 [TBL] [Abstract][Full Text] [Related]
18. TGF-β signaling and its role in the regulation of hematopoietic stem cells. Vaidya A; Kale VP Syst Synth Biol; 2015 Jun; 9(1-2):1-10. PubMed ID: 25972984 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. Tuli R; Tuli S; Nandi S; Huang X; Manner PA; Hozack WJ; Danielson KG; Hall DJ; Tuan RS J Biol Chem; 2003 Oct; 278(42):41227-36. PubMed ID: 12893825 [TBL] [Abstract][Full Text] [Related]
20. The role of Smad signaling in hematopoiesis. Larsson J; Karlsson S Oncogene; 2005 Aug; 24(37):5676-92. PubMed ID: 16123801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]