These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22993686)

  • 21. Electrothermoplasmonic Trapping and Dynamic Manipulation of Single Colloidal Nanodiamond.
    Hong C; Yang S; Kravchenko II; Ndukaife JC
    Nano Lett; 2021 Jun; 21(12):4921-4927. PubMed ID: 34096729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic nano-optical trap stiffness measurements and design optimization.
    Jiang Q; Claude JB; Wenger J
    Nanoscale; 2021 Feb; 13(7):4188-4194. PubMed ID: 33576761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation.
    Liu Y; Lin L; Bangalore Rajeeva B; Jarrett JW; Li X; Peng X; Kollipara P; Yao K; Akinwande D; Dunn AK; Zheng Y
    ACS Nano; 2018 Oct; 12(10):10383-10392. PubMed ID: 30226980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards Spatio-Temporal Control in Optical Trapping.
    Roy D; De AK; Goswami D
    Proc SPIE Int Soc Opt Eng; 2009 Aug; 7400():. PubMed ID: 23814446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination.
    De AK; Roy D; Dutta A; Goswami D
    Appl Opt; 2009 Nov; 48(31):G33-7. PubMed ID: 19881642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures.
    Lu G; Li W; Zhang T; Yue S; Liu J; Hou L; Li Z; Gong Q
    ACS Nano; 2012 Feb; 6(2):1438-48. PubMed ID: 22247937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong magnetic resonances and largely enhanced second-harmonic generation of colloidal MoS
    Ding SJ; Luo ZJ; Xie YM; Pan GM; Qiu YH; Chen K; Zhou L; Wang J; Lin HQ; Wang QQ
    Nanoscale; 2017 Dec; 10(1):124-131. PubMed ID: 29231226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-dielectric nanotweezers for trapping and observation of a single quantum dot.
    Xu Z; Crozier KB
    Opt Express; 2019 Feb; 27(4):4034-4045. PubMed ID: 30876026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold cauldrons as efficient candidates for plasmonic tweezers.
    Khosravi MA; Aqhili A; Vasini S; Khosravi MH; Darbari S; Hajizadeh F
    Sci Rep; 2020 Nov; 10(1):19356. PubMed ID: 33168879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon resonance-based optical trapping of single and multiple Au nanoparticles.
    Toussaint KC; Liu M; Pelton M; Pesic J; Guffey MJ; Guyot-Sionnest P; Scherer NF
    Opt Express; 2007 Sep; 15(19):12017-29. PubMed ID: 19547566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic optical trapping in biologically relevant media.
    Roxworthy BJ; Johnston MT; Lee-Montiel FT; Ewoldt RH; Imoukhuede PI; Toussaint KC
    PLoS One; 2014; 9(4):e93929. PubMed ID: 24710326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
    Conteduca D; Dell'Olio F; Krauss TF; Ciminelli C
    Appl Spectrosc; 2017 Mar; 71(3):367-390. PubMed ID: 28287314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation.
    Butet J; Lovera A; Martin OJ
    Opt Express; 2013 Nov; 21(23):28710-8. PubMed ID: 24514383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.