These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22993686)

  • 61. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.
    Lin PT; Chu HY; Lu TW; Lee PT
    Lab Chip; 2014 Dec; 14(24):4647-52. PubMed ID: 25288366
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlling optical trapping of metal-dielectric hybrid nanoparticles under ultrafast pulsed excitation: a theoretical investigation.
    Devi A; Nair SS; Yadav S; De AK
    Nanoscale Adv; 2021 Jun; 3(11):3288-3297. PubMed ID: 36133651
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays.
    Kang M; Yuwen Y; Hu W; Yun S; Mahalingam K; Jiang B; Eyink K; Poutrina E; Richardson K; Mayer TS
    ACS Nano; 2017 Jun; 11(6):5844-5852. PubMed ID: 28582622
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.
    Gui L; Bagheri S; Strohfeldt N; Hentschel M; Zgrabik CM; Metzger B; Linnenbank H; Hu EL; Giessen H
    Nano Lett; 2016 Sep; 16(9):5708-13. PubMed ID: 27494639
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nonlinear optical response from arrays of Au bowtie nanoantennas.
    Ko KD; Kumar A; Fung KH; Ambekar R; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2011 Jan; 11(1):61-5. PubMed ID: 21105719
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Levitated Plasmonic Nanoantennas in an Aqueous Environment.
    Tuna Y; Kim JT; Liu HW; Sandoghdar V
    ACS Nano; 2017 Aug; 11(8):7674-7678. PubMed ID: 28696667
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas.
    Jin RC; Li JQ; Li L; Dong ZG; Liu Y
    Opt Lett; 2019 Jan; 44(2):319-322. PubMed ID: 30644890
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Plasmonic mid-infrared third harmonic generation in germanium nanoantennas.
    Fischer MP; Riede A; Gallacher K; Frigerio J; Pellegrini G; Ortolani M; Paul DJ; Isella G; Leitenstorfer A; Biagioni P; Brida D
    Light Sci Appl; 2018; 7():106. PubMed ID: 30564312
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plasmon-enhanced linear and second-order surface nonlinear optical response of silver nanoparticles fabricated using a femtosecond pulse.
    Zhang L; Lu F; Zhang W; Gao K; Xue T; Liu M; Mao D; Huang L; Gao F; Mei T
    Nanotechnology; 2020 Jan; 31(3):035305. PubMed ID: 31569084
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry.
    Liu Y; Sonek GJ; Berns MW; Tromberg BJ
    Biophys J; 1996 Oct; 71(4):2158-67. PubMed ID: 8889192
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation.
    Roy D; Goswami D; De AK
    Appl Opt; 2015 Aug; 54(23):7002-6. PubMed ID: 26368367
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
    Zhang W; Huang L; Santschi C; Martin OJ
    Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fabrication of a Plasmonic Nanoantenna Array Using Metal Deposition on Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate.
    Kim J; Abbas N; Lee S; Yeom J; Asgar MA; Badshah MA; Lu X; Kim YK; Kim SM
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375587
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nonlinear modulation on optical trapping in a plasmonic bowtie structure.
    Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X
    Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficient Third Harmonic Generation from Metal-Dielectric Hybrid Nanoantennas.
    Shibanuma T; Grinblat G; Albella P; Maier SA
    Nano Lett; 2017 Apr; 17(4):2647-2651. PubMed ID: 28288274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.