These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22994270)

  • 1. Comparison of two-dimensional fast Raman imaging versus point-by-point acquisition mode for human bone characterization.
    Falgayrac G; Cortet B; Devos O; Barbillat J; Pansini V; Cotten A; Pasquier G; Migaud H; Penel G
    Anal Chem; 2012 Nov; 84(21):9116-23. PubMed ID: 22994270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing throughput in label-free microspectroscopy with hybrid Raman imaging.
    Pavillon N; Smith NI
    J Biomed Opt; 2015 Jan; 20(1):016007. PubMed ID: 25572258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman mapping using advanced line-scanning systems: geological applications.
    Bernard S; Beyssac O; Benzerara K
    Appl Spectrosc; 2008 Nov; 62(11):1180-8. PubMed ID: 19007458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.
    Dal Sasso G; Angelini I; Maritan L; Artioli G
    Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Samples Extracted from Embalmed Subjects Are Not Appropriate for the Assessment of Bone Quality at the Molecular Level Using Raman Spectroscopy.
    Pascart T; Cortet B; Olejnik C; Paccou J; Migaud H; Cotten A; Delannoy Y; During A; Hardouin P; Penel G; Falgayrac G
    Anal Chem; 2016 Mar; 88(5):2777-83. PubMed ID: 26824493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting CARS images of tissue within the C-H-stretching region.
    Meyer T; Bergner N; Medyukhina A; Dietzek B; Krafft C; Romeike BF; Reichart R; Kalff R; Popp J
    J Biophotonics; 2012 Oct; 5(10):729-33. PubMed ID: 22815249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of intraventricular systolic asynchrony in patients with atrial fibrillation using triplane tissue Doppler imaging.
    Kang SJ; Lim HS; Choi JH; Choi BJ; Choi SY; Yoon MH; Shin JH; Tahk SJ
    J Am Soc Echocardiogr; 2008 Mar; 21(3):219-23. PubMed ID: 17628420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-polarization Raman spectral imaging to extract overlapping molecular fingerprints of living cells.
    Chiu LD; Palonpon AF; Smith NI; Kawata S; Sodeoka M; Fujita K
    J Biophotonics; 2015 Jul; 8(7):546-54. PubMed ID: 24733812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical assessment of nanostructures in human trabecular bone: Proposal of a Raman microspectroscopy based measurements protocol.
    Toledano M; Toledano-Osorio M; Guerado E; Caso E; Aguilera FS; Osorio R
    Injury; 2018 Sep; 49 Suppl 2():S11-S21. PubMed ID: 30077357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of image quality of two different three-dimensional cone-beam-scanners used for orthopedic surgery in the bony structures of the pelvis in comparison with standard CT scans].
    Stuby F; Seethaler AC; Shiozawa T; Weise K; Mroue A; Badke A; Buchgeister M; Ochs BG
    Z Orthop Unfall; 2011 Dec; 149(6):659-67. PubMed ID: 21590660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy.
    Goodyear SR; Gibson IR; Skakle JM; Wells RP; Aspden RM
    Bone; 2009 May; 44(5):899-907. PubMed ID: 19284975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical approaches to Raman imaging: principal component score mapping.
    Marin E; Bristol DR; Rondinella A; Lanzutti A; Riello P
    Anal Methods; 2024 May; 16(17):2707-2720. PubMed ID: 38629136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman line mapping as a fast method for analyzing pharmaceutical bead formulations.
    Sasić S; Clark DA; Mitchell JC; Snowden MJ
    Analyst; 2005 Nov; 130(11):1530-6. PubMed ID: 16222376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy.
    Draper ER; Morris MD; Camacho NP; Matousek P; Towrie M; Parker AW; Goodship AE
    J Bone Miner Res; 2005 Nov; 20(11):1968-72. PubMed ID: 16234970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free in situ SERS imaging of biofilms.
    Ivleva NP; Wagner M; Szkola A; Horn H; Niessner R; Haisch C
    J Phys Chem B; 2010 Aug; 114(31):10184-94. PubMed ID: 20684642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging.
    Rowlands CJ; Varma S; Perkins W; Leach I; Williams H; Notingher I
    J Biophotonics; 2012 Mar; 5(3):220-9. PubMed ID: 22180147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved iterative thresholding method to delineate PET volumes using the delineation-averaged signal instead of the enclosed maximum signal.
    Jentzen W
    J Nucl Med Technol; 2015 Mar; 43(1):28-35. PubMed ID: 25655341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate Curve Resolution Applied to Hyperspectral Imaging Analysis of Chocolate Samples.
    Zhang X; de Juan A; Tauler R
    Appl Spectrosc; 2015 Aug; 69(8):993-1003. PubMed ID: 26162693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments.
    Paulite M; Blum C; Schmid T; Opilik L; Eyer K; Walker GC; Zenobi R
    ACS Nano; 2013 Feb; 7(2):911-20. PubMed ID: 23311496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging.
    Pavillon N; Hobro AJ; Smith NI
    Biophys J; 2013 Sep; 105(5):1123-32. PubMed ID: 24010655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.