These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22995144)

  • 1. Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
    Dong XN; Acuna RL; Luo Q; Wang X
    J Biomech; 2012 Nov; 45(16):2829-34. PubMed ID: 22995144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
    Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H
    J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
    Dong XN; Almer JD; Wang X
    J Biomech; 2011 Feb; 44(4):676-82. PubMed ID: 21112589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
    Novitskaya E; Lee S; Lubarda VA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):817-23. PubMed ID: 25427492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to assess post-yield energy dissipation of bone in tension.
    Wang X; Nyman JS
    J Biomech; 2007; 40(3):674-7. PubMed ID: 16545820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
    Leng H; Dong XN; Wang X
    J Biomech; 2009 Mar; 42(4):491-7. PubMed ID: 19150716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive post-yield behavior of human cortical bone in shear.
    Dong XN; Luo Q; Wang X
    Bone; 2013 Mar; 53(1):1-5. PubMed ID: 23219946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
    Nyman JS; Leng H; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):613-9. PubMed ID: 19716106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.
    Leng H; Reyes MJ; Dong XN; Wang X
    Bone; 2013 Aug; 55(2):288-91. PubMed ID: 23598045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.
    Nyman JS; Roy A; Reyes MJ; Wang X
    J Biomed Mater Res A; 2009 May; 89(2):521-9. PubMed ID: 18437693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-yield relaxation behavior of bovine cancellous bone.
    Burgers TA; Lakes RS; García-Rodríguez S; Piller GR; Ploeg HL
    J Biomech; 2009 Dec; 42(16):2728-33. PubMed ID: 19765712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior.
    Granke M; Coulmier A; Uppuganti S; Gaddy JA; Does MD; Nyman JS
    J Mech Behav Biomed Mater; 2014 Sep; 37():174-85. PubMed ID: 24929851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques.
    Giri B; Almer JD; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2012 Oct; 14():101-12. PubMed ID: 22982959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of rib cortical bone compressive and tensile material properties: Trends with age, sex, and loading rate.
    Albert DL; Katzenberger MJ; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2021 Oct; 122():104668. PubMed ID: 34265671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.