These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22995144)

  • 21. Compressive Mechanical Properties of Larch Wood in Different Grain Orientations.
    Sun J; Zhao R; Zhong Y; Chen Y
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties.
    Rohlmann A; Zilch H; Bergmann G; Kölbel R
    Arch Orthop Trauma Surg (1978); 1980; 97(2):95-102. PubMed ID: 7458606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The anisotropic compressive mechanical properties of the rabbit patellar tendon.
    Williams LN; Elder SH; Bouvard JL; Horstemeyer MF
    Biorheology; 2008; 45(5):577-86. PubMed ID: 19065006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of damage accumulation measures in human cortical bone.
    Jepsen KJ; Davy DT
    J Biomech; 1997 Sep; 30(9):891-4. PubMed ID: 9302611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone.
    Katzenberger MJ; Albert DL; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103410. PubMed ID: 31655338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropy of bovine cortical bone tissue damage properties.
    Szabó ME; Thurner PJ
    J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneity of yield strain in low-density versus high-density human trabecular bone.
    Bevill G; Farhamand F; Keaveny TM
    J Biomech; 2009 Sep; 42(13):2165-70. PubMed ID: 19700162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Formalin Preservation Time and Temperature on the Material Properties of Bovine Femoral Cortical Bone Tissue.
    Zhang G; Wang S; Xu S; Guan F; Bai Z; Mao H
    Ann Biomed Eng; 2019 Apr; 47(4):937-952. PubMed ID: 30671755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective mechanical properties of diaphyseal cortical bone in the canine femur.
    Autefage A; Palierne S; Charron C; Swider P
    Vet J; 2012 Nov; 194(2):202-9. PubMed ID: 22595311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How tough is bone? Application of elastic-plastic fracture mechanics to bone.
    Yan J; Mecholsky JJ; Clifton KB
    Bone; 2007 Feb; 40(2):479-84. PubMed ID: 17030159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of strain rate on the mechanical properties of human cortical bone.
    Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D
    J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of nonenzymatic glycation on mechanical properties of demineralized bone matrix under compression.
    Trebacz H; Zdunek A; Dys W; Gieroba T; Wlizlo E
    J Appl Biomater Biomech; 2011; 9(2):144-9. PubMed ID: 22065392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.