These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22995167)

  • 21. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell.
    Ishii S; Logan BE; Sekiguchi Y
    Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere.
    Chen Z; Huang YC; Liang JH; Zhao F; Zhu YG
    Bioresour Technol; 2012 Mar; 108():55-9. PubMed ID: 22265978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.
    You S; Zhao Q; Zhang J; Liu H; Jiang J; Zhao S
    Biosens Bioelectron; 2008 Feb; 23(7):1157-60. PubMed ID: 18068969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode.
    Liu T; Rao L; Yuan Y; Zhuang L
    ScientificWorldJournal; 2015; 2015():864568. PubMed ID: 26065026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint.
    Wei J; Liang P; Cao X; Huang X
    Environ Sci Technol; 2010 Apr; 44(8):3187-91. PubMed ID: 20345152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells.
    Zou Y; Pisciotta J; Baskakov IV
    Bioelectrochemistry; 2010 Aug; 79(1):50-6. PubMed ID: 19969509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A μL-scale micromachined microbial fuel cell having high power density.
    Choi S; Lee HS; Yang Y; Parameswaran P; Torres CI; Rittmann BE; Chae J
    Lab Chip; 2011 Mar; 11(6):1110-7. PubMed ID: 21311808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load.
    Raghavulu SV; Goud RK; Sarma PN; Mohan SV
    Bioresour Technol; 2011 Feb; 102(3):2751-7. PubMed ID: 21146401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics.
    Venkata Mohan S; Srikanth S; Veer Raghuvulu S; Mohanakrishna G; Kiran Kumar A; Sarma PN
    Bioresour Technol; 2009 Apr; 100(7):2240-6. PubMed ID: 19071015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Sep; 24(1):41-7. PubMed ID: 18440217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single chamber stackable microbial fuel cell with air cathode.
    Wang B; Han JI
    Biotechnol Lett; 2009 Mar; 31(3):387-93. PubMed ID: 19034389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Apr; 23(9):1326-32. PubMed ID: 18248978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and operation of freshwater sediment microbial fuel cell for electricity generation.
    Song TS; Yan ZS; Zhao ZW; Jiang HL
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):621-7. PubMed ID: 21221652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.