BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22995215)

  • 1. Catalytic mechanisms of complex II enzymes: a structural perspective.
    Iverson TM
    Biochim Biophys Acta; 2013 May; 1827(5):648-57. PubMed ID: 22995215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes.
    Maklashina E; Cecchini G; Dikanov SA
    Biochim Biophys Acta; 2013 May; 1827(5):668-78. PubMed ID: 23396003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quinone-binding and catalytic site of complex II.
    Maklashina E; Cecchini G
    Biochim Biophys Acta; 2010 Dec; 1797(12):1877-82. PubMed ID: 20175986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The di-heme family of respiratory complex II enzymes.
    Lancaster CR
    Biochim Biophys Acta; 2013 May; 1827(5):679-87. PubMed ID: 23466335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex II from a structural perspective.
    Horsefield R; Iwata S; Byrne B
    Curr Protein Pept Sci; 2004 Apr; 5(2):107-18. PubMed ID: 15078221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II.
    Tomasiak TM; Maklashina E; Cecchini G; Iverson TM
    J Biol Chem; 2008 May; 283(22):15460-8. PubMed ID: 18385138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function and structure of complex II of the respiratory chain.
    Cecchini G
    Annu Rev Biochem; 2003; 72():77-109. PubMed ID: 14527321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prokaryotic assembly factors for the attachment of flavin to complex II.
    McNeil MB; Fineran PC
    Biochim Biophys Acta; 2013 May; 1827(5):637-47. PubMed ID: 22985599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of parasite complex II.
    Harada S; Inaoka DK; Ohmori J; Kita K
    Biochim Biophys Acta; 2013 May; 1827(5):658-67. PubMed ID: 23333273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase.
    Tomasiak TM; Archuleta TL; Andréll J; Luna-Chávez C; Davis TA; Sarwar M; Ham AJ; McDonald WH; Yankovskaya V; Stern HA; Johnston JN; Maklashina E; Cecchini G; Iverson TM
    J Biol Chem; 2011 Jan; 286(4):3047-56. PubMed ID: 21098488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases.
    Lancaster CR; Herzog E; Juhnke HD; Madej MG; Müller FG; Paul R; Schleidt PG
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):996-1000. PubMed ID: 18793177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria.
    Inaoka DK; Shiba T; Sato D; Balogun EO; Sasaki T; Nagahama M; Oda M; Matsuoka S; Ohmori J; Honma T; Inoue M; Kita K; Harada S
    Int J Mol Sci; 2015 Jul; 16(7):15287-308. PubMed ID: 26198225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging concepts in the flavinylation of succinate dehydrogenase.
    Kim HJ; Winge DR
    Biochim Biophys Acta; 2013 May; 1827(5):627-36. PubMed ID: 23380393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.
    Ruprecht J; Iwata S; Rothery RA; Weiner JH; Maklashina E; Cecchini G
    J Biol Chem; 2011 Apr; 286(14):12756-65. PubMed ID: 21310949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of mitochondrial respiratory membrane protein complex II.
    Sun F; Huo X; Zhai Y; Wang A; Xu J; Su D; Bartlam M; Rao Z
    Cell; 2005 Jul; 121(7):1043-57. PubMed ID: 15989954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain.
    Maklashina E; Iverson TM; Sher Y; Kotlyar V; Andréll J; Mirza O; Hudson JM; Armstrong FA; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2006 Apr; 281(16):11357-65. PubMed ID: 16484232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinate:quinone oxidoreductases: an overview.
    Lancaster CR
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):1-6. PubMed ID: 11803013
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site.
    Gao X; Wen X; Esser L; Quinn B; Yu L; Yu CA; Xia D
    Biochemistry; 2003 Aug; 42(30):9067-80. PubMed ID: 12885240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis for the Catalytic Mechanism of Ethylenediamine- N, N'-disuccinic Acid Lyase, a Carbon-Nitrogen Bond-Forming Enzyme with a Broad Substrate Scope.
    Poddar H; de Villiers J; Zhang J; Puthan Veetil V; Raj H; Thunnissen AWH; Poelarends GJ
    Biochemistry; 2018 Jul; 57(26):3752-3763. PubMed ID: 29741885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.