These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22995267)

  • 1. Effect of heating on the mechanical properties of insole materials.
    Brodsky JW; Brajtbord J; Coleman SC; Raut S; Polo FE
    Foot Ankle Int; 2012 Sep; 33(9):772-8. PubMed ID: 22995267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties, durability, and energy-dissipation function of dual-density orthotic materials used in insoles for diabetic patients.
    Brodsky JW; Pollo FE; Cheleuitte D; Baum BS
    Foot Ankle Int; 2007 Aug; 28(8):880-9. PubMed ID: 17697652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary investigation on the reduction of plantar loading pressure with different insole materials (SRP--Slow Recovery Poron, P--Poron, PPF--Poron +Plastazote, firm and PPS--Poron+Plastazote, soft).
    Tong JW; Ng EY
    Foot (Edinb); 2010 Mar; 20(1):1-6. PubMed ID: 20434673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wear and biomechanical characteristics of a novel shear-reducing insole with implications for high-risk persons with diabetes.
    Lavery LA; Lanctot DR; Constantinides G; Zamorano RG; Athanasiou KA; Agrawal CM
    Diabetes Technol Ther; 2005 Aug; 7(4):638-46. PubMed ID: 16120040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks.
    Sanders JE; Greve JM; Mitchell SB; Zachariah SG
    J Rehabil Res Dev; 1998 Jun; 35(2):161-76. PubMed ID: 9651888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of multidensity orthotic materials used in footwear for patients with diabetes.
    Foto JG; Birke JA
    Foot Ankle Int; 1998 Dec; 19(12):836-41. PubMed ID: 9872471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.
    Lo WT; Yick KL; Ng SP; Yip J
    J Rehabil Res Dev; 2014; 51(2):311-24. PubMed ID: 24933729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of medical footwear for suitable distribution of stress and strain and reduction of plantar pressure by numerical and experimental approaches.
    Shakouri E; Mossayebi A; Saraeian P
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1051-1063. PubMed ID: 31354099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of some shock absorbing insoles.
    Pratt DJ; Rees PH; Rodgers C
    Prosthet Orthot Int; 1986 Apr; 10(1):43-5. PubMed ID: 3725565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression testing of foamed plastics and rubbers for use as orthotic show insoles.
    Campbell G; Newell E; McLure M
    Prosthet Orthot Int; 1982 Apr; 6(1):48-52. PubMed ID: 7079112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive behavior after simulated service conditions of some foamed materials intended as orthotic shoe insoles.
    Campbell GJ; McLure M; Newell EN
    J Rehabil Res Dev; 1984 Jul; 21(2):57-65. PubMed ID: 6530678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plantar pressure with and without custom insoles in patients with common foot complaints.
    Stolwijk NM; Louwerens JW; Nienhuis B; Duysens J; Keijsers NL
    Foot Ankle Int; 2011 Jan; 32(1):57-65. PubMed ID: 21288435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective evaluation of insert material for diabetic and athletic footwear.
    Brodsky JW; Kourosh S; Stills M; Mooney V
    Foot Ankle; 1988 Dec; 9(3):111-6. PubMed ID: 3229697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing and finite element assessment of a novel pressure reducing insole for Diabetic Neuropathic patients.
    Ghassemi A; Mossayebi AR; Jamshidi N; Naemi R; Karimi MT
    Australas Phys Eng Sci Med; 2015 Mar; 38(1):63-70. PubMed ID: 25536901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical evaluation of insole materials used to treat the diabetic foot.
    Faulí AC; Andrés CL; Rosas NP; Fernández MJ; Parreño EM; Barceló CO
    J Am Podiatr Med Assoc; 2008; 98(3):229-38. PubMed ID: 18487597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.
    Linge K
    Acta Orthop Belg; 1996; 62 Suppl 1():18-22. PubMed ID: 9084557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic plantar pressure analysis. Comparing common insole materials.
    Sanfilippo PB; Stess RM; Moss KM
    J Am Podiatr Med Assoc; 1992 Oct; 82(10):507-13. PubMed ID: 1474483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insole effects on impact loading during walking.
    Creaby MW; May K; Bennell KL
    Ergonomics; 2011 Jul; 54(7):665-71. PubMed ID: 21770753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.