These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22995346)
21. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). Li X; Hou Y; Zhang L; Zhang W; Quan C; Cui Y; Bian S Plant Signal Behav; 2014; 9(9):e29462. PubMed ID: 25763692 [TBL] [Abstract][Full Text] [Related]
22. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery(F). Ono NN; Britton MT; Fass JN; Nicolet CM; Lin D; Tian L J Integr Plant Biol; 2011 Oct; 53(10):800-13. PubMed ID: 21910825 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome analysis and identification of genes associated with floral transition and fruit development in rabbiteye blueberry (Vaccinium ashei). Gao X; Wang L; Zhang H; Zhu B; Lv G; Xiao J PLoS One; 2021; 16(10):e0259119. PubMed ID: 34710165 [TBL] [Abstract][Full Text] [Related]
24. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants. Walworth AE; Chai B; Song GQ PLoS One; 2016; 11(6):e0156993. PubMed ID: 27271296 [TBL] [Abstract][Full Text] [Related]
25. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis. Sun Y; Wang J; Qiu Y; Liu T; Song J; Li X Gene; 2018 May; 657():81-91. PubMed ID: 29518548 [TBL] [Abstract][Full Text] [Related]
26. Effects of Different Light Wavelengths on Fruit Quality and Gene Expression of Anthocyanin Biosynthesis in Blueberry ( Wei Z; Yang H; Shi J; Duan Y; Wu W; Lyu L; Li W Cells; 2023 Apr; 12(9):. PubMed ID: 37174623 [TBL] [Abstract][Full Text] [Related]
27. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing. Hou Y; Zhai L; Li X; Xue Y; Wang J; Yang P; Cao C; Li H; Cui Y; Bian S Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29257112 [TBL] [Abstract][Full Text] [Related]
28. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum). Cocetta G; Rossoni M; Gardana C; Mignani I; Ferrante A; Spinardi A Physiol Plant; 2015 Feb; 153(2):269-83. PubMed ID: 24943920 [TBL] [Abstract][Full Text] [Related]
29. Superior cross-species reference genes: a blueberry case study. Die JV; Rowland LJ PLoS One; 2013; 8(9):e73354. PubMed ID: 24058469 [TBL] [Abstract][Full Text] [Related]
31. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum. Yang Y; Cui B; Tan Z; Song B; Cao H; Zong C BMC Genomics; 2018 Dec; 19(1):930. PubMed ID: 30545307 [TBL] [Abstract][Full Text] [Related]
32. Comparative anatomical and transcriptomic insights into Vaccinium corymbosum flower bud and fruit throughout development. Yang L; Liu L; Wang Z; Zong Y; Yu L; Li Y; Liao F; Chen M; Cai K; Guo W BMC Plant Biol; 2021 Jun; 21(1):289. PubMed ID: 34167466 [TBL] [Abstract][Full Text] [Related]
33. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528 [TBL] [Abstract][Full Text] [Related]
34. De novo sequencing transcriptome of endemic Gentiana straminea (Gentianaceae) to identify genes involved in the biosynthesis of active ingredients. Zhou D; Gao S; Wang H; Lei T; Shen J; Gao J; Chen S; Yin J; Liu J Gene; 2016 Jan; 575(1):160-70. PubMed ID: 26358503 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). Liu JP; Xia ZQ; Tian XY; Li YJ BMC Genomics; 2015 May; 16(1):398. PubMed ID: 25994052 [TBL] [Abstract][Full Text] [Related]
36. Identification of R2R3-MYB family in blueberry and its potential involvement of anthocyanin biosynthesis in fruits. Wang H; Zhai L; Wang S; Zheng B; Hu H; Li X; Bian S BMC Genomics; 2023 Aug; 24(1):505. PubMed ID: 37648968 [TBL] [Abstract][Full Text] [Related]
37. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed. Zhang T; Song C; Song L; Shang Z; Yang S; Zhang D; Sun W; Shen Q; Zhao D Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29144390 [No Abstract] [Full Text] [Related]
38. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
39. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Hyun TK; Rim Y; Jang HJ; Kim CH; Park J; Kumar R; Lee S; Kim BC; Bhak J; Nguyen-Quoc B; Kim SW; Lee SY; Kim JY Plant Mol Biol; 2012 Jul; 79(4-5):413-27. PubMed ID: 22580955 [TBL] [Abstract][Full Text] [Related]
40. De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma P; Bian X; Jia Z; Guo X; Xie Y Gene; 2016 Jan; 575(2 Pt 3):641-9. PubMed ID: 26410411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]