These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22995473)

  • 1. InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.
    Stevenson MA; Sanson RL; Stern MW; O'Leary BD; Sujau M; Moles-Benfell N; Morris RS
    Prev Vet Med; 2013 Apr; 109(1-2):10-24. PubMed ID: 22995473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The North American Animal Disease Spread Model: a simulation model to assist decision making in evaluating animal disease incursions.
    Harvey N; Reeves A; Schoenbaum MA; Zagmutt-Vergara FJ; Dubé C; Hill AE; Corso BA; McNab WB; Cartwright CI; Salman MD
    Prev Vet Med; 2007 Dec; 82(3-4):176-97. PubMed ID: 17614148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation analyses to evaluate alternative control strategies for the 2002 foot-and-mouth disease outbreak in the Republic of Korea.
    Yoon H; Wee SH; Stevenson MA; O'Leary BD; Morris RS; Hwang IJ; Park CK; Stern MW
    Prev Vet Med; 2006 May; 74(2-3):212-25. PubMed ID: 16423417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic, spatially-explicit epidemic models.
    Carpenter TE
    Rev Sci Tech; 2011 Aug; 30(2):417-24. PubMed ID: 21961214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reviewing model application to support animal health decision making.
    Singer A; Salman M; Thulke HH
    Prev Vet Med; 2011 Apr; 99(1):60-7. PubMed ID: 21306779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling two strains of disease via aggregate-level infectivity curves.
    Romanescu R; Deardon R
    J Math Biol; 2016 Apr; 72(5):1195-224. PubMed ID: 26084408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid simulation of spatial epidemics: a spectral method.
    Brand SP; Tildesley MJ; Keeling MJ
    J Theor Biol; 2015 Apr; 370():121-34. PubMed ID: 25659478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A discrete-time communicable disease model with a stochastic contact rate for nonhomogeneous populations.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():77-88. PubMed ID: 2065180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of heterogeneous operation-specific contact parameters changes predictions for foot-and-mouth disease outbreaks in complex simulation models.
    Dickey BF; Carpenter TE; Bartell SM
    Prev Vet Med; 2008 Nov; 87(3-4):272-87. PubMed ID: 18579239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The World Organisation for Animal Health and epidemiological modelling: background and objectives.
    Willeberg P; Grubbe T; Weber S; Forde-Folle K; Dubé C
    Rev Sci Tech; 2011 Aug; 30(2):391-405. PubMed ID: 21961212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards flexible decision support in the control of animal epidemics.
    Ge L; Mourits MC; Huirne RB
    Rev Sci Tech; 2007 Dec; 26(3):551-63. PubMed ID: 18293604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-structured dynamic, stochastic and mechanistic simulation model of Salmonella Dublin infection within dairy herds.
    Nielsen LR; Kudahl AB; Østergaard S
    Prev Vet Med; 2012 Jun; 105(1-2):59-74. PubMed ID: 22417623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simulation model for the potential spread of foot-and-mouth disease in the Castile and Leon region of Spain.
    Martínez-López B; Perez AM; Sánchez-Vizcaíno JM
    Prev Vet Med; 2010 Aug; 96(1-2):19-29. PubMed ID: 20579754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic movement models to understand epidemic spread.
    Fofana AM; Hurford A
    Philos Trans R Soc Lond B Biol Sci; 2017 May; 372(1719):. PubMed ID: 28289254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spatially stochastic epidemic model with partial immunization shows in mean field approximation the reinfection threshold.
    Stollenwerk N; van Noort S; Martins J; Aguiar M; Hilker F; Pinto A; Gomes G
    J Biol Dyn; 2010 Nov; 4(6):634-49. PubMed ID: 22881209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing approximations to spatio-temporal models for epidemics with local spread.
    Filipe JA; Gibson GJ
    Bull Math Biol; 2001 Jul; 63(4):603-24. PubMed ID: 11497160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.