These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22995491)
1. Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Chen J; Irianto J; Inamdar S; Pravincumar P; Lee DA; Bader DL; Knight MM Biophys J; 2012 Sep; 103(6):1188-97. PubMed ID: 22995491 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling. Nguyen BV; Wang QG; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z J R Soc Interface; 2010 Dec; 7(53):1723-33. PubMed ID: 20519215 [TBL] [Abstract][Full Text] [Related]
3. The effect of matrix stiffness on biomechanical properties of chondrocytes. Zhang Q; Yu Y; Zhao H Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):958-965. PubMed ID: 27590061 [TBL] [Abstract][Full Text] [Related]
4. Substrate stiffness together with soluble factors affects chondrocyte mechanoresponses. Chen C; Xie J; Deng L; Yang L ACS Appl Mater Interfaces; 2014 Sep; 6(18):16106-16. PubMed ID: 25162787 [TBL] [Abstract][Full Text] [Related]
5. Significant increase in Young's modulus of ATDC5 cells during chondrogenic differentiation induced by PAMPS/PDMAAm double-network gel: comparison with induction by insulin. Maeda E; Tsutsumi T; Kitamura N; Kurokawa T; Ping Gong J; Yasuda K; Ohashi T J Biomech; 2014 Oct; 47(13):3408-14. PubMed ID: 25110167 [TBL] [Abstract][Full Text] [Related]
6. Response of sheep chondrocytes to changes in substrate stiffness from 2 to 20 Pa: effect of cell passaging. Sanz-Ramos P; Mora G; Vicente-Pascual M; Ochoa I; Alcaine C; Moreno R; Doblaré M; Izal-Azcárate I Connect Tissue Res; 2013; 54(3):159-66. PubMed ID: 23323769 [TBL] [Abstract][Full Text] [Related]
7. Effect of matrix elasticity on the maintenance of the chondrogenic phenotype. Schuh E; Kramer J; Rohwedel J; Notbohm H; Müller R; Gutsmann T; Rotter N Tissue Eng Part A; 2010 Apr; 16(4):1281-90. PubMed ID: 19903088 [TBL] [Abstract][Full Text] [Related]
8. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. Kim E; Guilak F; Haider MA J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199 [TBL] [Abstract][Full Text] [Related]
9. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells]. ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684 [No Abstract] [Full Text] [Related]
10. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Guilak F; Jones WR; Ting-Beall HP; Lee GM Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015 [TBL] [Abstract][Full Text] [Related]
12. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Callahan LA; Ganios AM; Childers EP; Weiner SD; Becker ML Acta Biomater; 2013 Apr; 9(4):6095-104. PubMed ID: 23291491 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials. Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain. Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362 [TBL] [Abstract][Full Text] [Related]
15. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. Buckley CT; Thorpe SD; O'Brien FJ; Robinson AJ; Kelly DJ J Mech Behav Biomed Mater; 2009 Oct; 2(5):512-21. PubMed ID: 19627858 [TBL] [Abstract][Full Text] [Related]
16. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Mauck RL; Seyhan SL; Ateshian GA; Hung CT Ann Biomed Eng; 2002 Sep; 30(8):1046-56. PubMed ID: 12449765 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope. Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365 [TBL] [Abstract][Full Text] [Related]
18. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Sliogeryte K; Botto L; Lee DA; Knight MM Osteoarthritis Cartilage; 2016 May; 24(5):912-20. PubMed ID: 26706702 [TBL] [Abstract][Full Text] [Related]
19. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. Steward AJ; Wagner DR; Kelly DJ Eur Cell Mater; 2013 Feb; 25():167-78. PubMed ID: 23389751 [TBL] [Abstract][Full Text] [Related]
20. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy. Wala J; Das S Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]