BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22995495)

  • 1. Robust driving forces for transmembrane helix packing.
    Benjamini A; Smit B
    Biophys J; 2012 Sep; 103(6):1227-35. PubMed ID: 22995495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helix packing in membrane proteins.
    Bowie JU
    J Mol Biol; 1997 Oct; 272(5):780-9. PubMed ID: 9368657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical packing patterns in membrane and soluble proteins.
    Gimpelev M; Forrest LR; Murray D; Honig B
    Biophys J; 2004 Dec; 87(6):4075-86. PubMed ID: 15465852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
    Eilers M; Patel AB; Liu W; Smith SO
    Biophys J; 2002 May; 82(5):2720-36. PubMed ID: 11964258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
    De Marothy MT; Elofsson A
    Protein Sci; 2015 Jul; 24(7):1057-74. PubMed ID: 25970811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch.
    Sparr E; Ash WL; Nazarov PV; Rijkers DT; Hemminga MA; Tieleman DP; Killian JA
    J Biol Chem; 2005 Nov; 280(47):39324-31. PubMed ID: 16169846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization.
    Stangl M; Schneider D
    Biochim Biophys Acta; 2015 Sep; 1848(9):1886-96. PubMed ID: 25791349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From membrane to molecule to the third amino acid from the left with a membrane transport protein.
    Kaback HR; Wu J
    Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The positive inside rule is stronger when followed by a transmembrane helix.
    Virkki MT; Peters C; Nilsson D; Sörensen T; Cristobal S; Wallner B; Elofsson A
    J Mol Biol; 2014 Aug; 426(16):2982-91. PubMed ID: 24927974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-protein interactions in biological membranes: a structural perspective.
    Lee AG
    Biochim Biophys Acta; 2003 May; 1612(1):1-40. PubMed ID: 12729927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics and stability of transmembrane helix packing: a replica-exchange simulation with a knowledge-based membrane potential.
    Chen Z; Xu Y
    Proteins; 2006 Feb; 62(2):539-52. PubMed ID: 16299775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.