These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22995506)

  • 1. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments.
    Fan J; Saunders MG; Voth GA
    Biophys J; 2012 Sep; 103(6):1334-42. PubMed ID: 22995506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular origins of cofilin-linked changes in actin filament mechanics.
    Fan J; Saunders MG; Haddadian EJ; Freed KF; De La Cruz EM; Voth GA
    J Mol Biol; 2013 Apr; 425(7):1225-40. PubMed ID: 23352932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics.
    Deriu MA; Shkurti A; Paciello G; Bidone TC; Morbiducci U; Ficarra E; Audenino A; Acquaviva A
    Proteins; 2012 Jun; 80(6):1598-609. PubMed ID: 22411308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM; Roland J; McCullough BR; Blanchoin L; Martiel JL
    Biophys J; 2010 Sep; 99(6):1852-60. PubMed ID: 20858430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments.
    Kim JI; Kwon J; Baek I; Na S
    Biophys Chem; 2016 Nov; 218():27-35. PubMed ID: 27589672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations.
    Chu JW; Voth GA
    Biophys J; 2006 Mar; 90(5):1572-82. PubMed ID: 16361345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segment-1.
    Lee M; Kang EH
    Proteins; 2020 Feb; 88(2):385-392. PubMed ID: 31498927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cracked actin filaments as mechanosensitive receptors.
    Zsolnay V; Gardel ML; Kovar DR; Voth GA
    Biophys J; 2024 Oct; 123(19):3283-3294. PubMed ID: 38894540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CUMULUS coarse graining method: transferable potentials for water and solutes.
    van Hoof B; Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2011 Aug; 115(33):10001-12. PubMed ID: 21740053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanics of actin filament: A molecular dynamics simulation.
    Shamloo A; Mehrafrooz B
    Cytoskeleton (Hoboken); 2018 Mar; 75(3):118-130. PubMed ID: 29272080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.
    Hocky GM; Baker JL; Bradley MJ; Sinitskiy AV; De La Cruz EM; Voth GA
    J Phys Chem B; 2016 May; 120(20):4558-67. PubMed ID: 27146246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cofilin reduces the mechanical properties of actin filaments: approach with coarse-grained methods.
    Kim JI; Kwon J; Baek I; Park HS; Na S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8148-58. PubMed ID: 25727245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating mechanisms during actin filament elongation by formins.
    Aydin F; Courtemanche N; Pollard TD; Voth GA
    Elife; 2018 Jul; 7():. PubMed ID: 30035712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments.
    Douglas RG; Nandekar P; Aktories JE; Kumar H; Weber R; Sattler JM; Singer M; Lepper S; Sadiq SK; Wade RC; Frischknecht F
    PLoS Biol; 2018 Jul; 16(7):e2005345. PubMed ID: 30011270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of the actin filament.
    Pfaendtner J; Lyman E; Pollard TD; Voth GA
    J Mol Biol; 2010 Feb; 396(2):252-63. PubMed ID: 19931282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of extension-torsion coupling of actin filaments.
    Matsushita S; Inoue Y; Adachi T
    Biochem Biophys Res Commun; 2012 Apr; 420(4):710-3. PubMed ID: 22366037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments.
    Mani S; Katkar HH; Voth GA
    J Chem Theory Comput; 2021 Mar; 17(3):1900-1913. PubMed ID: 33596075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.