These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22995618)

  • 1. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.
    Wu Z; Wu X; Yang Y; Wen TB; Han S
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6358-61. PubMed ID: 22995618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor.
    Wu X; Wu Z; Han S
    Chem Commun (Camb); 2011 Nov; 47(41):11468-70. PubMed ID: 21952323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate.
    Han S; Xue Z; Wang Z; Wen TB
    Chem Commun (Camb); 2010 Nov; 46(44):8413-5. PubMed ID: 20936197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromo-fluorogenic detection of aldehydes with a rhodamine based sensor featuring an intramolecular deoxylactam.
    Li Z; Xue Z; Wu Z; Han J; Han S
    Org Biomol Chem; 2011 Oct; 9(22):7652-4. PubMed ID: 21947083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromo-Fluorogenic Detection of Soman and Its Simulant by Thiourea-Based Rhodamine Probe.
    Li S; Zheng Y; Chen W; Zheng M; Zheng H; Zhang Z; Cui Y; Zhong J; Zhao C
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30813539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorogenic and chromogenic probe for rapid detection of a nerve agent simulant DCP.
    Wu WH; Dong JJ; Wang X; Li J; Sui SH; Chen GY; Liu JW; Zhang M
    Analyst; 2012 Jul; 137(14):3224-6. PubMed ID: 22624148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP.
    Mahapatra AK; Maiti K; Manna SK; Maji R; Mondal S; Das Mukhopadhyay C; Sahoo P; Mandal D
    Chem Commun (Camb); 2015 Jun; 51(47):9729-32. PubMed ID: 25980383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromo-fluorogenic detection of nerve-agent mimics using triggered cyclization reactions in push-pull dyes.
    Costero AM; Parra M; Gil S; Gotor R; Mancini PM; Martínez-Máñez R; Sancenón F; Royo S
    Chem Asian J; 2010 Jul; 5(7):1573-85. PubMed ID: 20512798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW; Swager TM
    J Am Chem Soc; 2003 Mar; 125(12):3420-1. PubMed ID: 12643690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent polymeric aggregates for selective response to sarin surrogates.
    Rusu AD; Moleavin IA; Hurduc N; Hamel M; Rocha L
    Chem Commun (Camb); 2014 Sep; 50(69):9965-8. PubMed ID: 25034965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent sensors for organophosphorus nerve agent mimics.
    Dale TJ; Rebek J
    J Am Chem Soc; 2006 Apr; 128(14):4500-1. PubMed ID: 16594648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes.
    Candel I; Bernardos A; Climent E; Marcos MD; Martínez-Máñez R; Sancenón F; Soto J; Costero A; Gil S; Parra M
    Chem Commun (Camb); 2011 Aug; 47(29):8313-5. PubMed ID: 21691625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles.
    Cui Z; Han C; Li H
    Analyst; 2011 Apr; 136(7):1351-6. PubMed ID: 21305084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution.
    Zheng H; Qian ZH; Xu L; Yuan FF; Lan LD; Xu JG
    Org Lett; 2006 Mar; 8(5):859-61. PubMed ID: 16494459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd2+ in aqueous media.
    Goswami S; Aich K; Das S; Das AK; Manna A; Halder S
    Analyst; 2013 Mar; 138(6):1903-7. PubMed ID: 23392200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity.
    Tan JL; Zhang MX; Zhang F; Yang TT; Liu Y; Li ZB; Zuo H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():489-94. PubMed ID: 25638432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective fluorescence sensor for Tin (Sn4+) and its application in imaging live cells.
    Wang Q; Li C; Zou Y; Wang H; Yi T; Huang C
    Org Biomol Chem; 2012 Sep; 10(33):6740-6. PubMed ID: 22805766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media.
    Chatterjee A; Santra M; Won N; Kim S; Kim JK; Kim SB; Ahn KH
    J Am Chem Soc; 2009 Feb; 131(6):2040-1. PubMed ID: 19159289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach.
    Tohora N; Ahamed S; Mahato M; Sultana T; Chourasia J; Maiti A; Das SK
    Photochem Photobiol Sci; 2024 Apr; 23(4):763-780. PubMed ID: 38519812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Covalent-Assembly"-Based Fluorescent Probe for Detection of a Nerve-Agent Mimic (DCP) via Lossen Rearrangement.
    Huo B; Du M; Shen A; Li M; Lai Y; Bai X; Gong A; Yang Y
    Anal Chem; 2019 Sep; 91(17):10979-10983. PubMed ID: 31373196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.