BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22995639)

  • 1. Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer.
    Park HY; Kloxin CJ; Abuelyaman AS; Oxman JD; Bowman CN
    Dent Mater; 2012 Nov; 28(11):1113-9. PubMed ID: 22995639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent adaptable networks as dental restorative resins: stress relaxation by addition-fragmentation chain transfer in allyl sulfide-containing resins.
    Park HY; Kloxin CJ; Scott TF; Bowman CN
    Dent Mater; 2010 Oct; 26(10):1010-6. PubMed ID: 20655100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials.
    Cramer NB; Couch CL; Schreck KM; Carioscia JA; Boulden JE; Stansbury JW; Bowman CN
    Dent Mater; 2010 Jan; 26(1):21-8. PubMed ID: 19781757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of methacrylate-thiol-ene formulations as dental restorative materials.
    Cramer NB; Couch CL; Schreck KM; Boulden JE; Wydra R; Stansbury JW; Bowman CN
    Dent Mater; 2010 Aug; 26(8):799-806. PubMed ID: 20553973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress relaxation of trithiocarbonate-dimethacrylate-based dental composites.
    Park HY; Kloxin CJ; Fordney MF; Bowman CN
    Dent Mater; 2012 Aug; 28(8):888-93. PubMed ID: 22608958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress relaxation via addition-fragmentation chain transfer in high T(g), high conversion methacrylate-based systems.
    Park HY; Kloxin CJ; Abuelyaman AS; Oxman JD; Bowman CN
    Macromolecules; 2012 Jul; 45(14):5640-5646. PubMed ID: 23125464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of highly reactive mono-methacrylates as reactive diluents for BisGMA-based dental composites.
    Kilambi H; Cramer NB; Schneidewind LH; Shah P; Stansbury JW; Bowman CN
    Dent Mater; 2009 Jan; 25(1):33-8. PubMed ID: 18584862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.
    Beigi S; Yeganeh H; Atai M
    Dent Mater; 2013 Jul; 29(7):777-87. PubMed ID: 23702048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system.
    Beigi Burujeny S; Atai M; Yeganeh H
    Dent Mater; 2015 Mar; 31(3):244-61. PubMed ID: 25605414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol-ene oligomers as dental restorative materials.
    Carioscia JA; Lu H; Stanbury JW; Bowman CN
    Dent Mater; 2005 Dec; 21(12):1137-43. PubMed ID: 16046232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced shrinkage stress via photo-initiated copper(I)-catalyzed cycloaddition polymerizations of azide-alkyne resins.
    Song HB; Sowan N; Shah PK; Baranek A; Flores A; Stansbury JW; Bowman CN
    Dent Mater; 2016 Nov; 32(11):1332-1342. PubMed ID: 27524230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites.
    Boaro LC; Gonçalves F; Guimarães TC; Ferracane JL; Versluis A; Braga RR
    Dent Mater; 2010 Dec; 26(12):1144-50. PubMed ID: 20832850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological and Mechanical Evaluation of Novel Prototype Dental Composites.
    Van der Laan HL; Zajdowicz SL; Kuroda K; Bielajew BJ; Davidson TA; Gardinier J; Kohn DH; Chahal S; Chang S; Liu J; Gerszberg J; Scott TF; Clarkson BH
    J Dent Res; 2019 Jan; 98(1):91-97. PubMed ID: 30189149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ester-free thiol-ene dental restoratives--Part A: Resin development.
    Podgórski M; Becka E; Claudino M; Flores A; Shah PK; Stansbury JW; Bowman CN
    Dent Mater; 2015 Nov; 31(11):1255-62. PubMed ID: 26360013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic covalent chemistry (DCC) in dental restorative materials: Implementation of a DCC-based adaptive interface (AI) at the resin-filler interface for improved performance.
    Sowan N; Dobson A; Podgorski M; Bowman CN
    Dent Mater; 2020 Jan; 36(1):53-59. PubMed ID: 31810600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-ene-methacrylate composites as dental restorative materials.
    Boulden JE; Cramer NB; Schreck KM; Couch CL; Bracho-Troconis C; Stansbury JW; Bowman CN
    Dent Mater; 2011 Mar; 27(3):267-72. PubMed ID: 21122904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of silorane-based dental resins and composites containing a stress-reducing monomer.
    Eick JD; Kotha SP; Chappelow CC; Kilway KV; Giese GJ; Glaros AG; Pinzino CS
    Dent Mater; 2007 Aug; 23(8):1011-7. PubMed ID: 17097138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress Reduction and T(g) Enhancement in Ternary Thiol-Yne-Methacrylate Systems via Addition-fragmentation Chain Transfer.
    Park HY; Kloxin CJ; Fordney MF; Bowman CN
    Macromolecules; 2012 Jul; 45(14):5647-5652. PubMed ID: 23162167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate.
    Fong H; Dickens SH; Flaim GM
    Dent Mater; 2005 Jun; 21(6):520-9. PubMed ID: 15904694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction stress related to composite inorganic content.
    Gonçalves F; Kawano Y; Braga RR
    Dent Mater; 2010 Jul; 26(7):704-9. PubMed ID: 20378161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.