BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22995660)

  • 21. Acetabular strains produced by oversized press fit cups.
    Ries MD; Harbaugh M
    Clin Orthop Relat Res; 1997 Jan; (334):276-81. PubMed ID: 9005924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum.
    Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z
    J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-fin acetabular prosthesis for superior acetabular bone defects: a three-dimensional finite element analysis.
    Liu YZ; Hai Y; Zhao H
    Chin Med J (Engl); 2012 Mar; 125(5):901-5. PubMed ID: 22490594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Bone grafts in hip prosthesis revisions].
    Krbec M; Adler J; Messner P
    Acta Chir Orthop Traumatol Cech; 2003; 70(2):83-8. PubMed ID: 12807040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design factors influencing performance of constrained acetabular liners: finite element characterization.
    Bouchard SM; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(5):885-93. PubMed ID: 16488227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Early primary total hip arthroplasty for acetabular fractures in elderly patients].
    Simko P; Braunsteiner T; Vajcziková S
    Acta Chir Orthop Traumatol Cech; 2006 Aug; 73(4):275-82. PubMed ID: 17026887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A stress analysis of acetabular reconstruction in protrusio acetabuli.
    Crowninshield RD; Brand RA; Pedersen DR
    J Bone Joint Surg Am; 1983 Apr; 65(4):495-9. PubMed ID: 6833325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a computer navigation system and a CT method for determination of the orientation of implanted acetabular cup in total hip arthroplasty: a cadaver study.
    Lin F; Lim D; Wixson RL; Milos S; Hendrix RW; Makhsous M
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1004-11. PubMed ID: 18541352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust design for acetabular cup stability accounting for patient and surgical variability.
    Ong KL; Santner TJ; Bartel DL
    J Biomech Eng; 2008 Jun; 130(3):031001. PubMed ID: 18532850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of under-reaming on the cup/bone interface of a press fit hip replacement.
    Zivkovic I; Gonzalez M; Amirouche F
    J Biomech Eng; 2010 Apr; 132(4):041008. PubMed ID: 20387971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of cementless acetabular component in revision surgery without pelvic discontinuity.
    Cherubino P; D'Angelo F; Surace MF; Murena L; Vulcano E
    Surg Technol Int; 2010 Oct; 20():315-20. PubMed ID: 21082580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements.
    Hua X; Li J; Wang L; Wilcox R; Fisher J; Jin Z
    Med Eng Phys; 2015 Oct; 37(10):1008-14. PubMed ID: 26343226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element modelling for assessing effect of acetabular component orientation on the basic stress path above acetabular dome.
    Nie Y; Pei FX; Li ZM
    Orthop Surg; 2015 Feb; 7(1):66-73. PubMed ID: 25708038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.
    Goebel P; Kluess D; Wieding J; Souffrant R; Heyer H; Sander M; Bader R
    J Orthop Sci; 2013 Mar; 18(2):264-70. PubMed ID: 23377753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel method to assess primary stability of press-fit acetabular cups.
    Crosnier EA; Keogh PS; Miles AW
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1126-34. PubMed ID: 25384445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmental acetabular rim defects, bone loss, oversizing, and press fit cup in total hip arthroplasty evaluated with a probabilistic finite element analysis.
    Amirouche F; Solitro GF; Walia A; Gonzalez M; Bobko A
    Int Orthop; 2017 Aug; 41(8):1527-1533. PubMed ID: 28012048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of the pelvic bone on the computational results of the acetabular component of a total hip prosthesis.
    Barreto S; Folgado J; Fernandes PR; Monteiro J
    J Biomech Eng; 2010 May; 132(5):054503. PubMed ID: 20459214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstruction of severe acetabular bone defects with porous metal augment in total hip arthroplasty: A finite element analysis study.
    Li P; Tang H; Liu X; Chen Z; Zhang X; Zhou Y; Jin Z
    Proc Inst Mech Eng H; 2022 Feb; 236(2):179-187. PubMed ID: 34686098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.