BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22995716)

  • 1. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania.
    Dulf FV
    Chem Cent J; 2012 Sep; 6(1):106. PubMed ID: 22995716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed.
    Fatima T; Snyder CL; Schroeder WR; Cram D; Datla R; Wishart D; Weselake RJ; Krishna P
    PLoS One; 2012; 7(4):e34099. PubMed ID: 22558083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of triacylglycerols of seeds and berries of sea buckthorn (Hippophaë rhamnoides) of different origins by mass spectrometry and tandem mass spectrometry.
    Yang B; Kallio H
    Lipids; 2006 Apr; 41(4):381-92. PubMed ID: 16808152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid composition of lipids in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins.
    Yang B; Kallio HP
    J Agric Food Chem; 2001 Apr; 49(4):1939-47. PubMed ID: 11308350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: identification and effects of different origins and harvesting times.
    Yang B; Karlsson RM; Oksman PH; Kallio HP
    J Agric Food Chem; 2001 Nov; 49(11):5620-9. PubMed ID: 11714369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil goldenberry (Physalis peruviana L.).
    Ramadan MF; Mörsel JT
    J Agric Food Chem; 2003 Feb; 51(4):969-74. PubMed ID: 12568557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioisomer compositions of vaccenic and oleic acid containing triacylglycerols in sea buckthorn (Hippophae rhamnoides) pulp oils: influence of origin and weather conditions.
    Leskinen HM; Suomela JP; Yang B; Kallio HP
    J Agric Food Chem; 2010 Jan; 58(1):537-45. PubMed ID: 19938856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times.
    Yang B; Linko AM; Adlercreutz H; Kallio H
    J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties.
    Pop RM; Weesepoel Y; Socaciu C; Pintea A; Vincken JP; Gruppen H
    Food Chem; 2014 Mar; 147():1-9. PubMed ID: 24206678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice.
    Socaci SA; Socaciu C; Tofană M; Raţi IV; Pintea A
    Phytochem Anal; 2013; 24(4):319-28. PubMed ID: 23319448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of Sea Buckthorn (Hippophaë rhamnoides).
    Kallio H; Yang B; Peippo P; Tahvonen R; Pan R
    J Agric Food Chem; 2002 May; 50(10):3004-9. PubMed ID: 11982433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in sea buckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers.
    Li H; Ruan C; Ding J; Li J; Wang L; Tian X
    PLoS One; 2020; 15(3):e0230356. PubMed ID: 32168329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp.
    Ding J; Ruan C; Du W; Guan Y
    BMC Plant Biol; 2019 May; 19(1):207. PubMed ID: 31109294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary supplementation with sea buckthorn (Hippophaë rhamnoides) seed and pulp oils on atopic dermatitis.
    Yang B; Kalimo KO; Mattila LM; Kallio SE; Katajisto JK; Peltola OJ; Kallio HP
    J Nutr Biochem; 1999 Nov; 10(11):622-30. PubMed ID: 15539258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and identification of ISSR markers associated with oil content in sea buckthorn berries.
    Ding J; Ruan CJ; Guan Y; Shan JY; Li H; Bao YH
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochemical composition and antibacterial activity of the essential oils from different parts of sea buckthorn (Hippophae rhamnoides L.).
    Yue XF; Shang X; Zhang ZJ; Zhang YN
    J Food Drug Anal; 2017 Apr; 25(2):327-332. PubMed ID: 28911674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran.
    Saeidi K; Alirezalu A; Akbari Z
    Nat Prod Res; 2016; 30(3):366-8. PubMed ID: 26214249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.).
    Dulf FV; Oroian I; Vodnar DC; Socaciu C; Pintea A
    Molecules; 2013 Sep; 18(10):11768-82. PubMed ID: 24071984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of harvest time on the quality of oil-based compounds in sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) seed and fruit.
    St George SD; Cenkowski S
    J Agric Food Chem; 2007 Oct; 55(20):8054-61. PubMed ID: 17760409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites.
    Ma X; Laaksonen O; Zheng J; Yang W; Trépanier M; Kallio H; Yang B
    Food Chem; 2016 Jun; 200():189-98. PubMed ID: 26830578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.