These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22995780)

  • 61. Real-time MR artifacts filtering during continuous EEG/fMRI acquisition.
    Garreffa G; Carnì M; Gualniera G; Ricci GB; Bozzao L; De Carli D; Morasso P; Pantano P; Colonnese C; Roma V; Maraviglia B
    Magn Reson Imaging; 2003 Dec; 21(10):1175-89. PubMed ID: 14725925
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Removal of imaging artifacts in EEG during simultaneous EEG/fMRI recording: reconstruction of a high-precision artifact template.
    Koskinen M; Vartiainen N
    Neuroimage; 2009 May; 46(1):160-7. PubMed ID: 19457365
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Physical modeling of pulse artefact sources in simultaneous EEG/fMRI.
    Yan WX; Mullinger KJ; Geirsdottir GB; Bowtell R
    Hum Brain Mapp; 2010 Apr; 31(4):604-20. PubMed ID: 19823981
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).
    Steyrl D; Krausz G; Koschutnig K; Edlinger G; Müller-Putz GR
    Brain Topogr; 2018 Jan; 31(1):129-149. PubMed ID: 29124547
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Concurrent electrophysiological and hemodynamic measurements of evoked neural oscillations in human visual cortex using sparsely interleaved fast fMRI and EEG.
    Lee HJ; Huang SY; Kuo WJ; Graham SJ; Chu YH; Stenroos M; Lin FH
    Neuroimage; 2020 Aug; 217():116910. PubMed ID: 32389729
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimisation of a post-processing method to remove the pulse artifact from EEG data recorded during fMRI: an application to P300 recordings during e-fMRI.
    Otzenberger H; Gounot D; Foucher JR
    Neurosci Res; 2007 Feb; 57(2):230-9. PubMed ID: 17157401
    [TBL] [Abstract][Full Text] [Related]  

  • 67. EEG to MRI registration based on global and local similarities of MRI intensity distributions.
    Spiclin Z; Hans A; Duffy FH; Warfield SK; Likar B; Pernus F
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):762-70. PubMed ID: 18979815
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Automatic artefact removal in a self-paced hybrid brain- computer interface system.
    Yong X; Fatourechi M; Ward RK; Birch GE
    J Neuroeng Rehabil; 2012 Jul; 9():50. PubMed ID: 22838499
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Avoiding the ballistocardiogram (BCG) artifact of EEG data acquired simultaneously with fMRI by pulse-triggered presentation of stimuli.
    Ertl M; Kirsch V; Leicht G; Karch S; Olbrich S; Reiser M; Hegerl U; Pogarell O; Mulert C
    J Neurosci Methods; 2010 Feb; 186(2):231-41. PubMed ID: 19931564
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Best current practice for obtaining high quality EEG data during simultaneous FMRI.
    Mullinger KJ; Castellone P; Bowtell R
    J Vis Exp; 2013 Jun; (76):. PubMed ID: 23770804
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors.
    Luessi M; Babacan SD; Molina R; Booth JR; Katsaggelos AK
    Neuroimage; 2011 Mar; 55(1):113-32. PubMed ID: 21130173
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems.
    Giannelli M; Diciotti S; Tessa C; Mascalchi M
    Med Phys; 2010 Jan; 37(1):303-10. PubMed ID: 20175493
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ballistocardiogram artifact removal in simultaneous EEG-fMRI using generative adversarial network.
    Lin G; Zhang J; Liu Y; Gao T; Kong W; Lei X; Qiu T
    J Neurosci Methods; 2022 Apr; 371():109498. PubMed ID: 35167839
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI.
    Porcaro C; Ostwald D; Bagshaw AP
    Neuroimage; 2010 Mar; 50(1):112-23. PubMed ID: 20006718
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct modelling of gradient artifacts for EEG-fMRI denoising and motion tracking.
    Zhang S; Hennig J; LeVan P
    J Neural Eng; 2019 Aug; 16(5):056010. PubMed ID: 31216524
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data.
    Jansen M; White TP; Mullinger KJ; Liddle EB; Gowland PA; Francis ST; Bowtell R; Liddle PF
    Neuroimage; 2012 Jan; 59(1):261-70. PubMed ID: 21763774
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.
    Storti SF; Formaggio E; Beltramello A; Fiaschi A; Manganotti P
    Brain Topogr; 2010 Mar; 23(1):46-57. PubMed ID: 19921416
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A method for removing imaging artifact from continuous EEG recorded during functional MRI.
    Allen PJ; Josephs O; Turner R
    Neuroimage; 2000 Aug; 12(2):230-9. PubMed ID: 10913328
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement.
    Fellner MC; Volberg G; Mullinger KJ; Goldhacker M; Wimber M; Greenlee MW; Hanslmayr S
    Neuroimage; 2016 Jun; 133():354-366. PubMed ID: 27012498
    [TBL] [Abstract][Full Text] [Related]  

  • 80. EEG-correlated fMRI of human alpha activity.
    Laufs H; Kleinschmidt A; Beyerle A; Eger E; Salek-Haddadi A; Preibisch C; Krakow K
    Neuroimage; 2003 Aug; 19(4):1463-76. PubMed ID: 12948703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.