These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 22995827)

  • 1. Toward a molecular understanding of RNA remodeling by DEAD-box proteins.
    Russell R; Jarmoskaite I; Lambowitz AM
    RNA Biol; 2013 Jan; 10(1):44-55. PubMed ID: 22995827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEAD-box proteins as RNA helicases and chaperones.
    Jarmoskaite I; Russell R
    Wiley Interdiscip Rev RNA; 2011; 2(1):135-52. PubMed ID: 21297876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
    Jarmoskaite I; Bhaskaran H; Seifert S; Russell R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
    Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM
    Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of DEAD-box proteins in RNA and RNP Folding.
    Pan C; Russell R
    RNA Biol; 2010; 7(6):667-76. PubMed ID: 21045543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Mss116 ATPase reveals functional diversity of DEAD-Box proteins.
    Cao W; Coman MM; Ding S; Henn A; Middleton ER; Bradley MJ; Rhoades E; Hackney DD; Pyle AM; De La Cruz EM
    J Mol Biol; 2011 Jun; 409(3):399-414. PubMed ID: 21501623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mss116p: a DEAD-box protein facilitates RNA folding.
    Sachsenmaier N; Waldsich C
    RNA Biol; 2013 Jan; 10(1):71-82. PubMed ID: 23064153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
    Jarmoskaite I; Tijerina P; Russell R
    J Biol Chem; 2021; 296():100132. PubMed ID: 33262215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
    Jarmoskaite I; Helmers AE; Russell R
    Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
    Busa VF; Rector MJ; Russell R
    Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing.
    Bifano AL; Turk EM; Caprara MG
    J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs.
    Gilman B; Tijerina P; Russell R
    Biochem Soc Trans; 2017 Dec; 45(6):1313-1321. PubMed ID: 29150525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
    Pan C; Potratz JP; Cannon B; Simpson ZB; Ziehr JL; Tijerina P; Russell R
    PLoS Biol; 2014 Oct; 12(10):e1001981. PubMed ID: 25350280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R
    J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron.
    Zingler N; Solem A; Pyle AM
    Nucleic Acids Res; 2010 Oct; 38(19):6602-9. PubMed ID: 20554854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.