BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22995859)

  • 1. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips.
    Meinander K; Jensen TN; Simonsen SB; Helveg S; Lauritsen JV
    Nanotechnology; 2012 Oct; 23(40):405705. PubMed ID: 22995859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging.
    Cheung CL; Hafner JH; Lieber CM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3809-13. PubMed ID: 10737761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral force microscopy of multiwalled carbon nanotubes.
    Lievonen J; Ahlskog M
    Ultramicroscopy; 2009 Jun; 109(7):825-9. PubMed ID: 19375229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient attachment of carbon nanotubes to conventional and high-frequency AFM probes enhanced by electron beam processes.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Nanotechnology; 2013 Jun; 24(23):235705. PubMed ID: 23669234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology.
    Wong SS; Joselevich E; Woolley AT; Cheung CL; Lieber CM
    Nature; 1998 Jul; 394(6688):52-5. PubMed ID: 9665127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional imaging with carbon nanotube AFM probes.
    Hafner JH; Cheung CL; Woolley AT; Lieber CM
    Prog Biophys Mol Biol; 2001; 77(1):73-110. PubMed ID: 11473787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging.
    Zhao M; Sharma V; Wei H; Birge RR; Stuart JA; Papadimitrakopoulos F; Huey BD
    Nanotechnology; 2008 Jun; 19(23):235704. PubMed ID: 21825803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of carbon nanotube tipped atomic force microscopy in liquid.
    Korayem MH; Ebrahimi N
    Microsc Microanal; 2013 Jun; 19(3):761-8. PubMed ID: 23659615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction forces and conduction properties between multi wall carbon nanotube tips and Au(111).
    Luna M; de Pablo PJ; Colchero J; Gomez-Herrero J; Baro AM; Tokumoto H; Jarvis SP
    Ultramicroscopy; 2003 Jul; 96(1):83-92. PubMed ID: 12623173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes.
    Hohmura KI; Itokazu Y; Yoshimura SH; Mizuguchi G; Masamura YS; Takeyasu K; Shiomi Y; Tsurimoto T; Nishijima H; Akita S; Nakayama Y
    J Electron Microsc (Tokyo); 2000; 49(3):415-21. PubMed ID: 11108029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of single-walled carbon nanotube probe-sample multistability in tapping mode AFM imaging.
    Solares SD; Esplandiu MJ; Goddard WA; Collier CP
    J Phys Chem B; 2005 Jun; 109(23):11493-500. PubMed ID: 16852407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography.
    Sun Choi J; Bae S; Jung Ahn S; Hyun Kim D; Young Jung K; Han C; Choo Chung C; Lee H
    Ultramicroscopy; 2007 Oct; 107(10-11):1091-4. PubMed ID: 17604910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspect-ratio and lateral-resolution enhancement in force microscopy by attaching nanoclusters generated by an ion cluster source at the end of a silicon tip.
    Martínez L; Tello M; Díaz M; Román E; Garcia R; Huttel Y
    Rev Sci Instrum; 2011 Feb; 82(2):023710. PubMed ID: 21361604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex dynamics of carbon nanotube probe tips.
    Lee SI; Howell SW; Raman A; Reifenberger R; Nguyen CV; Meyyappan M
    Ultramicroscopy; 2005 May; 103(2):95-102. PubMed ID: 15774270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition.
    Kinoshita Y; Naitoh Y; Li YJ; Sugawara Y
    Rev Sci Instrum; 2011 Nov; 82(11):113707. PubMed ID: 22128984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes.
    Rius G; Lorenzoni M; Matsui S; Tanemura M; Perez-Murano F
    Beilstein J Nanotechnol; 2015; 6():215-22. PubMed ID: 25671165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of carbon nanotube AFM probes using the Langmuir-Blodgett technique.
    Lee JH; Kang WS; Choi BS; Choi SW; Kim JH
    Ultramicroscopy; 2008 Sep; 108(10):1163-7. PubMed ID: 18572322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.