BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22995919)

  • 1. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor-liquid-solid Si nanowires.
    Quitoriano NJ; Sanderson RN; Bae SS; Ragan R
    Nanotechnology; 2013 May; 24(20):205704. PubMed ID: 23609527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Dopant Compensation on Graded p-n Junctions in Si Nanowires.
    Amit I; Jeon N; Lauhon LJ; Rosenwaks Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):128-34. PubMed ID: 26650197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.
    Carapezzi S; Castaldini A; Mancarella F; Poggi A; Cavallini A
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10443-50. PubMed ID: 26979506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterning of ultrananocrystalline diamond nanowires.
    Wang X; Ocola LE; Divan RS; Sumant AV
    Nanotechnology; 2012 Feb; 23(7):075301. PubMed ID: 22261094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of p-type GaN nanowires.
    Kim SW; Park YH; Kim I; Park TE; Kwon BW; Choi WK; Choi HJ
    Nanoscale; 2013 Sep; 5(18):8550-4. PubMed ID: 23892611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.
    Molnar W; Lugstein A; Wojcik T; Pongratz P; Auner N; Bauch C; Bertagnolli E
    Beilstein J Nanotechnol; 2012; 3():564-9. PubMed ID: 23019552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.
    Bercu B; Geng W; Simonetti O; Kostcheev S; Sartel C; Sallet V; Lérondel G; Molinari M; Giraudet L; Couteau C
    Nanotechnology; 2013 Oct; 24(41):415202. PubMed ID: 24060613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.
    Tsukada M; Masago A; Shimizu M
    J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires.
    Han W; Zhou Y; Zhang Y; Chen CY; Lin L; Wang X; Wang S; Wang ZL
    ACS Nano; 2012 May; 6(5):3760-6. PubMed ID: 22537160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection.
    Tsai CC; Chiang PL; Sun CJ; Lin TW; Tsai MH; Chang YC; Chen YT
    Nanotechnology; 2011 Apr; 22(13):135503. PubMed ID: 21343647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review.
    Collins L; Kilpatrick JI; Kalinin SV; Rodriguez BJ
    Rep Prog Phys; 2018 Aug; 81(8):086101. PubMed ID: 29990308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires.
    Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced fabrication of Si nanowire FET structures by means of a parallel approach.
    Li J; Pud S; Mayer D; Vitusevich S
    Nanotechnology; 2014 Jul; 25(27):275302. PubMed ID: 24959696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of catalyst choices on transport behaviors of InAs NWs for high-performance nanoscale transistors.
    Chen SY; Wang CY; Ford AC; Chou JC; Wang YC; Wang FY; Ho JC; Wang HC; Javey A; Gan JY; Chen LJ; Chueh YL
    Phys Chem Chem Phys; 2013 Feb; 15(8):2654-9. PubMed ID: 23340577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.