These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 22995943)
61. Prefrontal mechanisms for executive control over emotional distraction are altered in major depression. Wang L; LaBar KS; Smoski M; Rosenthal MZ; Dolcos F; Lynch TR; Krishnan RR; McCarthy G Psychiatry Res; 2008 Jul; 163(2):143-55. PubMed ID: 18455373 [TBL] [Abstract][Full Text] [Related]
62. Altered neural circuits related to sustained attention and executive control in children with ADHD: an event-related fMRI study. Wang S; Yang Y; Xing W; Chen J; Liu C; Luo X Clin Neurophysiol; 2013 Nov; 124(11):2181-90. PubMed ID: 23800705 [TBL] [Abstract][Full Text] [Related]
63. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task. Chen Z; Lei X; Ding C; Li H; Chen A Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691 [TBL] [Abstract][Full Text] [Related]
64. Executive function impairments in depression and bipolar disorder: association with functional impairment and quality of life. Cotrena C; Branco LD; Shansis FM; Fonseca RP J Affect Disord; 2016 Jan; 190():744-753. PubMed ID: 26606718 [TBL] [Abstract][Full Text] [Related]
65. fNIRS-based investigation of the Stroop task after TBI. Plenger P; Krishnan K; Cloud M; Bosworth C; Qualls D; Marquez de la Plata C Brain Imaging Behav; 2016 Jun; 10(2):357-66. PubMed ID: 26058665 [TBL] [Abstract][Full Text] [Related]
66. Investigating executive control network and default mode network dysfunction in major depressive disorder. Zhao Q; Swati ZNK; Metmer H; Sang X; Lu J Neurosci Lett; 2019 May; 701():154-161. PubMed ID: 30831152 [TBL] [Abstract][Full Text] [Related]
67. White matter fiber compromise contributes differentially to attention and emotion processing impairment in alcoholism, HIV-infection, and their comorbidity. Schulte T; Müller-Oehring EM; Sullivan EV; Pfefferbaum A Neuropsychologia; 2012 Oct; 50(12):2812-2822. PubMed ID: 22960416 [TBL] [Abstract][Full Text] [Related]
68. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study. Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226 [TBL] [Abstract][Full Text] [Related]
69. Abnormal neural filtering of irrelevant visual information in depression. Desseilles M; Balteau E; Sterpenich V; Dang-Vu TT; Darsaud A; Vandewalle G; Albouy G; Salmon E; Peters F; Schmidt C; Schabus M; Gais S; Degueldre C; Phillips C; Luxen A; Ansseau M; Maquet P; Schwartz S J Neurosci; 2009 Feb; 29(5):1395-403. PubMed ID: 19193886 [TBL] [Abstract][Full Text] [Related]
70. The neural correlates of priming emotion and reward systems for conflict processing in alcoholics. Schulte T; Jung YC; Sullivan EV; Pfefferbaum A; Serventi M; Müller-Oehring EM Brain Imaging Behav; 2017 Dec; 11(6):1751-1768. PubMed ID: 27815773 [TBL] [Abstract][Full Text] [Related]
71. Investigating the neural correlates of the Stroop effect with magnetoencephalography. Galer S; Op De Beeck M; Urbain C; Bourguignon M; Ligot N; Wens V; Marty B; Van Bogaert P; Peigneux P; De Tiège X Brain Topogr; 2015 Jan; 28(1):95-103. PubMed ID: 24752907 [TBL] [Abstract][Full Text] [Related]
72. An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects. Song Y; Hakoda Y Behav Brain Res; 2015 Sep; 290():187-96. PubMed ID: 25952963 [TBL] [Abstract][Full Text] [Related]
73. Variability in post-error behavioral adjustment is associated with functional abnormalities in the temporal cortex in children with ADHD. Spinelli S; Vasa RA; Joel S; Nelson TE; Pekar JJ; Mostofsky SH J Child Psychol Psychiatry; 2011 Jul; 52(7):808-16. PubMed ID: 21175614 [TBL] [Abstract][Full Text] [Related]
74. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. Kaufmann L; Koppelstaetter F; Delazer M; Siedentopf C; Rhomberg P; Golaszewski S; Felber S; Ischebeck A Neuroimage; 2005 Apr; 25(3):888-98. PubMed ID: 15808989 [TBL] [Abstract][Full Text] [Related]
75. When Conflict Cannot be Avoided: Relative Contributions of Early Selection and Frontal Executive Control in Mitigating Stroop Conflict. Itthipuripat S; Deering S; Serences JT Cereb Cortex; 2019 Dec; 29(12):5037-5048. PubMed ID: 30877786 [TBL] [Abstract][Full Text] [Related]
76. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task. M J; M Z; J K; S A K; H S; N G J Biomed Phys Eng; 2020 Aug; 10(4):493-506. PubMed ID: 32802797 [TBL] [Abstract][Full Text] [Related]
77. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. Smoski MJ; Felder J; Bizzell J; Green SR; Ernst M; Lynch TR; Dichter GS J Affect Disord; 2009 Nov; 118(1-3):69-78. PubMed ID: 19261334 [TBL] [Abstract][Full Text] [Related]
78. Oddball and incongruity effects during Stroop task performance: a comparative fMRI study on selective attention. Melcher T; Gruber O Brain Res; 2006 Nov; 1121(1):136-49. PubMed ID: 17022954 [TBL] [Abstract][Full Text] [Related]
79. Common and specific loci of Stroop effects in vocal and manual tasks, revealed by event-related brain potentials and posthypnotic suggestions. Zahedi A; Abdel Rahman R; Stürmer B; Sommer W J Exp Psychol Gen; 2019 Sep; 148(9):1575-1594. PubMed ID: 30730196 [TBL] [Abstract][Full Text] [Related]
80. The Stroop effect: An activation likelihood estimation meta-analysis in healthy young adults. Huang Y; Su L; Ma Q Neurosci Lett; 2020 Jan; 716():134683. PubMed ID: 31830505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]