These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22995998)

  • 1. Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules.
    Urban J; Jandera P
    Anal Bioanal Chem; 2013 Mar; 405(7):2123-31. PubMed ID: 22995998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.
    Wang J; Bai L; Wei Z; Qin J; Ma Y; Liu H
    J Sep Sci; 2015 Jun; 38(12):2101-8. PubMed ID: 25864707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous polymer monoliths for small molecule separations: advancements and limitations.
    Nischang I; Teasdale I; Brüggemann O
    Anal Bioanal Chem; 2011 Jun; 400(8):2289-304. PubMed ID: 21190103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current trends in the development of porous polymer monoliths for the separation of small molecules.
    Urban J
    J Sep Sci; 2016 Jan; 39(1):51-68. PubMed ID: 26420171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance.
    Nischang I
    J Chromatogr A; 2013 Apr; 1287():39-58. PubMed ID: 23261286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs.
    Ding X; Yang J; Dong Y
    J Pharm Anal; 2018 Apr; 8(2):75-85. PubMed ID: 29736293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous polymer monoliths with large surface area and functional groups prepared via copolymerization of protected functional monomers and hypercrosslinking.
    Maya F; Svec F
    J Chromatogr A; 2013 Nov; 1317():32-8. PubMed ID: 23910448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of lauryl methacrylate-based monolithic microbore column for reversed-phase liquid chromatography.
    Shu S; Kobayashi H; Kojima N; Sabarudin A; Umemura T
    J Chromatogr A; 2011 Aug; 1218(31):5228-34. PubMed ID: 21703629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic monoliths for high-performance reversed-phase liquid chromatography.
    Liu K; Aggarwal P; Lawson JS; Tolley HD; Lee ML
    J Sep Sci; 2013 Sep; 36(17):2767-81. PubMed ID: 23813977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2011 Mar; 1218(10):1399-408. PubMed ID: 21295783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths.
    Nischang I; Brüggemann O
    J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent strategies to enhance the performance of polymer monoliths for analytical separations.
    Maya F; Paull B
    J Sep Sci; 2019 Apr; 42(8):1564-1576. PubMed ID: 30770635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules.
    Nesterenko EP; Nesterenko PN; Connolly D; Lacroix F; Paull B
    J Chromatogr A; 2010 Apr; 1217(14):2138-46. PubMed ID: 20189186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules.
    Liu K; Tolley HD; Lawson JS; Lee ML
    J Chromatogr A; 2013 Dec; 1321():80-7. PubMed ID: 24239038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the development of organic polymer monolithic columns and their applications in food analysis--a review.
    Jandera P
    J Chromatogr A; 2013 Oct; 1313():37-53. PubMed ID: 24034978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.
    Liu K; Tolley HD; Lee ML
    J Chromatogr A; 2012 Mar; 1227():96-104. PubMed ID: 22265778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies.
    Fekete S; Veuthey JL; Eeltink S; Guillarme D
    Anal Bioanal Chem; 2013 Apr; 405(10):3137-51. PubMed ID: 23358675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards stationary phases for chromatography on a microchip: molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography.
    Yu C; Svec F; Fréchet JM
    Electrophoresis; 2000 Jan; 21(1):120-7. PubMed ID: 10634478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.