These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22996035)

  • 1. An efficient and robust analysis of covariance model for baseline adjustment in parallel-group thorough QT/QTc studies.
    Lu K
    Stat Med; 2013 Jun; 32(14):2406-18. PubMed ID: 22996035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the average baseline versus the time-matched baseline in parallel group thorough QT/QTc studies.
    Meng Z; Quan H; Fan L; Kringle R; Sun G
    J Biopharm Stat; 2010 May; 20(3):665-82. PubMed ID: 20358444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient analysis of covariance model for crossover thorough QT studies with period-specific baseline days.
    Lu K
    Pharm Stat; 2013; 12(4):192-200. PubMed ID: 23625584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample size and power estimation in "thorough" QT/QTc studies with parallel group design.
    Hosmane B; Locke C; Chiu YL
    J Biopharm Stat; 2010 May; 20(3):578-86. PubMed ID: 20358437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of statistical models adjusting for baseline in the analysis of parallel-group thorough QT/QTc studies.
    Sun GG; Quan H; Kringle R; Meng Z
    J Biopharm Stat; 2012; 22(3):438-62. PubMed ID: 22416834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample size calculation for thorough QT/QTc study considering various factors related to multiple time points.
    Meng Z; Kringle R; Chen X; Zhao PL
    J Biopharm Stat; 2010 May; 20(3):563-77. PubMed ID: 20358436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient analysis of covariance model for crossover thorough QT studies with period-specific pre-dose baselines.
    Lu K
    Pharm Stat; 2014; 13(6):388-96. PubMed ID: 25283768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple comparisons of repeated measured response: issues of assessment of prolongation of QT interval in thorough QT trials.
    Tsong Y; Zhong J
    J Biopharm Stat; 2010 May; 20(3):604-14. PubMed ID: 20358439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian measurement error approach to QT interval correction and prolongation.
    Chen J; Zhao X
    J Biopharm Stat; 2010 May; 20(3):523-42. PubMed ID: 20358434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample size calculations for crossover thorough QT studies: satisfaction of regulatory threshold and assay sensitivity.
    Anand SP; Murray SC; Koch GG
    J Biopharm Stat; 2010 May; 20(3):587-603. PubMed ID: 20358438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A powerful test for the maximum treatment effect in thorough QT/QTc studies.
    Deng Y; Chen F; Li Y; Qian K; Wang R; Zhou XH
    Stat Med; 2021 Apr; 40(8):1947-1959. PubMed ID: 33463746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple comparisons of repeatedly measured response: issues of validation testing in thorough QT/QTc clinical trials.
    Tsong Y; Yan LK; Zhong J; Nie L; Zhang J
    J Biopharm Stat; 2010 May; 20(3):654-64. PubMed ID: 20358443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical consideration in testing for assay sensitivity in a "thorough" QT study.
    Sethuraman V; Wu S; Wang J
    J Biopharm Stat; 2010 May; 20(3):641-53. PubMed ID: 20358442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure-response modeling approach for assessing QT effect in "thorough" QT/QTc studies.
    Hosmane B; Locke C; Chiu YL
    J Biopharm Stat; 2010 May; 20(3):615-31. PubMed ID: 20358440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation.
    Malik M; Hnatkova K; Batchvarov V; Gang Y; Smetana P; Camm AJ
    Pacing Clin Electrophysiol; 2004 Dec; 27(12):1659-69. PubMed ID: 15613131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QT analysis: a complex answer to a 'simple' problem.
    Li L; Desai M; Desta Z; Flockhart D
    Stat Med; 2004 Sep; 23(17):2625-43. PubMed ID: 15316947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of baseline ECG collection on the planning, analysis and interpretation of 'thorough' QT trials.
    Sethuraman V; Sun Q
    Pharm Stat; 2009; 8(2):113-24. PubMed ID: 18481273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of six commonly used QT correction models and their parameter estimation methods.
    Wang D; Taubel J; Arezina R
    J Biopharm Stat; 2012; 22(6):1148-61. PubMed ID: 23075014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs.
    Rohatagi S; Carrothers TJ; Kuwabara-Wagg J; Khariton T
    J Clin Pharmacol; 2009 Nov; 49(11):1284-96. PubMed ID: 19734373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonparametric approach to QT interval correction for heart rate.
    Wang D; Cheung YB; Arezina R; Taubel J; Camm AJ
    J Biopharm Stat; 2010 May; 20(3):508-22. PubMed ID: 20358433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.