These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22996267)

  • 21. Neural complications in the surgical treatment of adolescent idiopathic scoliosis.
    Diab M; Smith AR; Kuklo TR;
    Spine (Phila Pa 1976); 2007 Nov; 32(24):2759-63. PubMed ID: 18007257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posterior lumbar interbody fusion for lytic spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers.
    Sears W
    Spine J; 2005; 5(2):161-9. PubMed ID: 15749616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal ion levels in patients with stainless steel spinal instrumentation.
    McPhee IB; Swanson CE
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1963-8. PubMed ID: 17700441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of modern spinal implants by airport metal detectors.
    Chinwalla F; Grevitt MP
    Spine (Phila Pa 1976); 2012 Nov; 37(24):2011-6. PubMed ID: 22543252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction of main thoracic adolescent idiopathic scoliosis using pedicle screw instrumentation: does higher implant density improve correction?
    Quan GM; Gibson MJ
    Spine (Phila Pa 1976); 2010 Mar; 35(5):562-7. PubMed ID: 20118842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anterior surgery with insertion of titanium mesh cage and posterior instrumented fusion performed sequentially on the same day under one anesthesia for septic spondylitis of thoracolumbar spine: is the use of titanium mesh cages safe?
    Korovessis P; Petsinis G; Koureas G; Iliopoulos P; Zacharatos S
    Spine (Phila Pa 1976); 2006 Apr; 31(9):1014-9. PubMed ID: 16641778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of whole blood titanium levels after instrumented spinal fusion - is there a correlation between the number of fused segments and titanium levels?
    Ipach I; Schäfer R; Mittag F; Leichtle C; Wolf P; Kluba T
    BMC Musculoskelet Disord; 2012 Aug; 13():159. PubMed ID: 22925526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term systemic metal distribution in patients with stainless steel spinal instrumentation: a case-control study.
    Savarino L; Greggi T; Martikos K; Lolli F; Greco M; Baldini N
    J Spinal Disord Tech; 2015 Apr; 28(3):114-8. PubMed ID: 22907064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serum Metal Concentrations in Patients With Titanium Ceramic Composite Cervical Disc Replacements.
    Gornet MF; Singh V; Schranck FW; Skipor AK; Jacobs JJ
    Spine (Phila Pa 1976); 2017 Mar; 42(6):366-371. PubMed ID: 27323223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Titanium Serum Levels in Patients After Spine Instrumentation: Comparison Between Posterolateral and 360º Spinal Fusion Surgery.
    Fernández Bances I; Paz Aparicio J; Alvarez Vega MA
    Cureus; 2019 Aug; 11(8):e5451. PubMed ID: 31511816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The "shadow sign": a radiographic differentiation of stainless steel versus titanium spinal instrumentation in spine surgery.
    Jones-Quaidoo SM; Novicoff W; Park A; Arlet V
    J Pediatr Orthop; 2011 Dec; 31(8):875-7. PubMed ID: 22101667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Re: Richardson TD, Pineda SJ, Strenge KB, et al. Serum titanium levels after instrumented spinal arthrodesis. Spine 2008;33:792–6.
    Meng H; Du JJ; Luo ZJ
    Spine (Phila Pa 1976); 2010 Aug; 35(18):1736. PubMed ID: 20714269
    [No Abstract]   [Full Text] [Related]  

  • 33. Evaluation of titanium release from titanium alloy implants in patients with spinal instrumentation.
    Ulusaloğlu AC; Atici T; Ermutlu C; Akesen S
    J Int Med Res; 2021 Jan; 49(1):300060520984931. PubMed ID: 33472477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metals in Spine.
    Tahal D; Madhavan K; Chieng LO; Ghobrial GM; Wang MY
    World Neurosurg; 2017 Apr; 100():619-627. PubMed ID: 28057595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants.
    Semlitsch M; Staub F; Weber H
    Biomed Tech (Berl); 1985 Dec; 30(12):334-9. PubMed ID: 4092064
    [No Abstract]   [Full Text] [Related]  

  • 36. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy.
    Jacobs JJ; Skipor AK; Black J; Urban Rm; Galante JO
    J Bone Joint Surg Am; 1991 Dec; 73(10):1475-86. PubMed ID: 1844129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of serum levels of titanium and aluminium ions in patients with early onset scoliosis operated upon using the magnetic growing rod-a single centre study of 14 patients.
    Borde MD; Sapare S; Schutgens E; Ali C; Noordeen H
    Spine Deform; 2021 Sep; 9(5):1473-1478. PubMed ID: 34297320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A systematic review of metal ion concentrations following instrumented spinal fusion.
    Siddiqi O; Urquhart JC; Rasoulinejad P
    Spine Deform; 2021 Jan; 9(1):13-40. PubMed ID: 32780305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of MRI-compatible titanium segmental spinal instrumentation in pediatric patients with intraspinal tumor.
    Torpey BM; Dormans JP; Drummond DS
    J Spinal Disord; 1995 Feb; 8(1):76-81. PubMed ID: 7711373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corrosion of Harrington rod in idiopathic scoliosis: long-term effects.
    Sherman B; Crowell T
    Eur Spine J; 2018 Jul; 27(Suppl 3):298-302. PubMed ID: 28624897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.