BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22996294)

  • 1. Coupling of two multistep catalytic cycles for the one-pot synthesis of propargylamines from alcohols and primary amines on a nanoparticulated gold catalyst.
    Corma A; Navas J; Sabater MJ
    Chemistry; 2012 Oct; 18(44):14150-6. PubMed ID: 22996294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bifunctional Pd/MgO solid catalyst for the one-pot selective N-monoalkylation of amines with alcohols.
    Corma A; Ródenas T; Sabater MJ
    Chemistry; 2010 Jan; 16(1):254-60. PubMed ID: 19904774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Rhodium-Catalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines.
    Rubio-Pérez L; Iglesias M; Munárriz J; Polo V; Pérez-Torrente JJ; Oro LA
    Chemistry; 2015 Dec; 21(49):17701-7. PubMed ID: 26490447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amide synthesis from alcohols and amines by the extrusion of dihydrogen.
    Nordstrøm LU; Vogt H; Madsen R
    J Am Chem Soc; 2008 Dec; 130(52):17672-3. PubMed ID: 19061316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines.
    He W; Wang L; Sun C; Wu K; He S; Chen J; Wu P; Yu Z
    Chemistry; 2011 Nov; 17(47):13308-17. PubMed ID: 21997929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel nanoparticles in hydrogen transfer reactions.
    Alonso F; Riente P; Yus M
    Acc Chem Res; 2011 May; 44(5):379-91. PubMed ID: 21417317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild and catalyst-free petasis/decarboxylative domino reaction: chemoselective synthesis of N-benzyl propargylamines.
    Feng H; Jia H; Sun Z
    J Org Chem; 2014 Dec; 79(23):11812-8. PubMed ID: 25407571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A3-multicomponent reaction performed as a two-step flow process.
    Abahmane L; Köhler JM; Gross GA
    Chemistry; 2011 Mar; 17(10):3005-10. PubMed ID: 21284044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple procedure for polymer-supported N-heterocyclic carbene silver complex via click chemistry: an efficient and recyclable catalyst for the one-pot synthesis of propargylamines.
    He Y; Lv MF; Cai C
    Dalton Trans; 2012 Oct; 41(40):12428-33. PubMed ID: 22940886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.
    Aguilar D; Contel M; Urriolabeitia EP
    Chemistry; 2010 Aug; 16(30):9287-96. PubMed ID: 20583055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organoamine-functionalized graphene oxide as a bifunctional carbocatalyst with remarkable acceleration in a one-pot multistep reaction.
    Zhang F; Jiang H; Wu X; Mao Z; Li H
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1669-77. PubMed ID: 25556875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.
    Zhang WX; Nishiura M; Hou Z
    Chemistry; 2007; 13(14):4037-51. PubMed ID: 17348047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts.
    Kegnæs S; Mielby J; Mentzel UV; Jensen T; Fristrup P; Riisager A
    Chem Commun (Camb); 2012 Feb; 48(18):2427-9. PubMed ID: 22274843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic coupling of CO2 with epoxide over supported and unsupported amines.
    Yu KM; Curcic I; Gabriel J; Morganstewart H; Tsang SC
    J Phys Chem A; 2010 Mar; 114(11):3863-72. PubMed ID: 19754090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of imines and secondary amines by Pd-catalyzed coupling of benzyl alcohols and primary amines.
    Kwon MS; Kim S; Park S; Bosco W; Chidrala RK; Park J
    J Org Chem; 2009 Apr; 74(7):2877-9. PubMed ID: 19265414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology.
    Hamid MH; Allen CL; Lamb GW; Maxwell AC; Maytum HC; Watson AJ; Williams JM
    J Am Chem Soc; 2009 Feb; 131(5):1766-74. PubMed ID: 19191700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics.
    Grirrane A; Corma A; García H
    Science; 2008 Dec; 322(5908):1661-4. PubMed ID: 19074342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "borrowing hydrogen strategy" by supported ruthenium hydroxide catalysts: synthetic scope of symmetrically and unsymmetrically substituted amines.
    Yamaguchi K; He J; Oishi T; Mizuno N
    Chemistry; 2010 Jun; 16(24):7199-207. PubMed ID: 20468035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.