These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22996721)
1. Toward design of an environment-aware adaptive locomotion-mode-recognition system. Du L; Zhang F; Liu M; Huang H IEEE Trans Biomed Eng; 2012 Oct; 59(10):2716-25. PubMed ID: 22996721 [TBL] [Abstract][Full Text] [Related]
2. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. Huang H; Zhang F; Hargrove LJ; Dou Z; Rogers DR; Englehart KB IEEE Trans Biomed Eng; 2011 Oct; 58(10):2867-75. PubMed ID: 21768042 [TBL] [Abstract][Full Text] [Related]
3. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. Liu M; Wang D; Helen Huang H IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962 [TBL] [Abstract][Full Text] [Related]
4. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
5. Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment. Huang H; Dou Z; Zhang F; Nunnery MJ Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4255-8. PubMed ID: 22255279 [TBL] [Abstract][Full Text] [Related]
6. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
7. Source selection for real-time user intent recognition toward volitional control of artificial legs. Fan Zhang ; He Huang IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369 [TBL] [Abstract][Full Text] [Related]
8. Real-time implementation of an intent recognition system for artificial legs. Zhang F; Dou Z; Nunnery M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2997-3000. PubMed ID: 22254971 [TBL] [Abstract][Full Text] [Related]
9. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
10. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. Zhang F; Liu M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499 [TBL] [Abstract][Full Text] [Related]
11. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
12. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285 [TBL] [Abstract][Full Text] [Related]
13. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
14. Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses. Fan Zhang ; Ming Liu ; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1128-31. PubMed ID: 26736464 [TBL] [Abstract][Full Text] [Related]
15. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
16. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
17. A locomotion intent prediction system based on multi-sensor fusion. Chen B; Zheng E; Wang Q Sensors (Basel); 2014 Jul; 14(7):12349-69. PubMed ID: 25014097 [TBL] [Abstract][Full Text] [Related]
18. Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input. Joshi D; Hahn ME Ann Biomed Eng; 2016 Apr; 44(4):1275-84. PubMed ID: 26224525 [TBL] [Abstract][Full Text] [Related]
19. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
20. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis. Khademi G; Simon D IEEE Trans Biomed Eng; 2021 Mar; 68(3):967-979. PubMed ID: 32784127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]