BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22997044)

  • 1. Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols.
    Xia Y; Zhang Z; Kessler MR; Brehm-Stecher B; Larock RC
    ChemSusChem; 2012 Nov; 5(11):2221-7. PubMed ID: 22997044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S; Shokrgozar MA; Yari A; Saeedi-Eslami SN
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):153-64. PubMed ID: 25428057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.
    Bakhshi H; Yeganeh H; Mehdipour-Ataei S
    J Biomed Mater Res A; 2013 Jun; 101(6):1599-611. PubMed ID: 23172859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties.
    Lu Y; Larock RC
    Biomacromolecules; 2008 Nov; 9(11):3332-40. PubMed ID: 18937404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.
    Zhang C; Ding R; Kessler MR
    Macromol Rapid Commun; 2014 Jun; 35(11):1068-74. PubMed ID: 24668919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soybean oil-isosorbide-based waterborne polyurethane-urea dispersions.
    Xia Y; Larock RC
    ChemSusChem; 2011 Mar; 4(3):386-91. PubMed ID: 21259447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis.
    Petrović ZS; Zhang W; Javni I
    Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New bioactive biomaterials based on quaternized chitosan.
    Belalia R; Grelier S; Benaissa M; Coma V
    J Agric Food Chem; 2008 Mar; 56(5):1582-8. PubMed ID: 18271546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential.
    Javaid MA; Khera RA; Zia KM; Saito K; Bhatti IA; Asghar M
    Int J Biol Macromol; 2018 Aug; 115():375-384. PubMed ID: 29627473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties.
    Kara F; Aksoy EA; Yuksekdag Z; Hasirci N; Aksoy S
    Carbohydr Polym; 2014 Nov; 112():39-47. PubMed ID: 25129714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral and antibacterial polyurethanes of various modalities.
    Park D; Larson AM; Klibanov AM; Wang Y
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1134-46. PubMed ID: 23306899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.
    Lu Y; Larock RC
    Biomacromolecules; 2007 Oct; 8(10):3108-14. PubMed ID: 17877401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of polyurethanes made from copolymers of epoxidized natural oil and tetrahydrofuran.
    Hoong SS; Yeong SK; Hassan HA; Din AK; Choo YM
    J Oleo Sci; 2015; 64(1):101-15. PubMed ID: 25492233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, antibacterial and corrosion protective properties of epoxies, epoxy-polyols and epoxy-polyurethane coatings from linseed and Pongamia glabra seed oils.
    Sharmin E; Ashraf SM; Ahmad S
    Int J Biol Macromol; 2007 Apr; 40(5):407-22. PubMed ID: 17145077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.
    Luo X; Xiao Y; Wu Q; Zeng J
    Int J Biol Macromol; 2018 Aug; 115():786-791. PubMed ID: 29702166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and development of a multifunctional self-decontaminating polyurethane coating.
    Wynne JH; Fulmer PA; McCluskey DM; Mackey NM; Buchanan JP
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2005-11. PubMed ID: 21545114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane.
    Wang MC; Lin JJ; Tseng HJ; Hsu SH
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):338-50. PubMed ID: 22128903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria.
    Mahfuzul Hoque MD; Bari ML; Inatsu Y; Juneja VK; Kawamoto S
    Foodborne Pathog Dis; 2007; 4(4):481-8. PubMed ID: 18041957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, antibacterial activity and cytocompatibility of quaternary ammonium chitooligosaccharide functionalized polyurethane membrane via polydopamine adhesive layer.
    Chen S; Luo C; Wen W; Tian J; Zhou C; Luo B
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():319-331. PubMed ID: 30274064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.