These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 22997169)

  • 1. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells.
    Chen TG; Yu P; Tsai YL; Shen CH; Shieh JM; Tsai MA; Kuo HC
    Opt Express; 2012 May; 20(10):A412-7. PubMed ID: 22712090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells.
    Liu Y; Sun SH; Xu J; Zhao L; Sun HC; Li J; Mu WW; Xu L; Chen KJ
    Opt Express; 2011 Sep; 19 Suppl 5():A1051-6. PubMed ID: 21935247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.
    Bong S; Ahn S; Anh le HT; Kim S; Park H; Shin C; Park J; Lee Y; Yi J
    J Nanosci Nanotechnol; 2016 May; 16(5):4978-83. PubMed ID: 27483855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organized broadband light trapping in thin film amorphous silicon solar cells.
    Martella C; Chiappe D; Delli Veneri P; Mercaldo LV; Usatii I; Buatier de Mongeot F
    Nanotechnology; 2013 Jun; 24(22):225201. PubMed ID: 23633473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.
    Fisker C; Pedersen TG
    Opt Express; 2013 Mar; 21 Suppl 2():A208-20. PubMed ID: 23482282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled hollow nanosphere arrays used as low Q whispering gallery mode resonators on thin film solar cells for light trapping.
    Yin J; Zang Y; Yue C; He X; Li J; Wu Z; Fang Y
    Phys Chem Chem Phys; 2013 Oct; 15(39):16874-82. PubMed ID: 23999602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.
    Khaleque T; Svavarsson HG; Magnusson R
    Opt Express; 2013 Jul; 21 Suppl 4():A631-41. PubMed ID: 24104490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband performance enhancement of thin-film amorphous silicon solar cells with conformal zig-zag configuration.
    Yang Z; Shang A; Zhan Y; Zhang C; Li X
    Opt Lett; 2013 Dec; 38(23):5071-4. PubMed ID: 24281512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light trapping in thin film silicon solar cells via phase separated disordered nanopillars.
    Donie YJ; Smeets M; Egel A; Lentz F; Preinfalk JB; Mertens A; Smirnov V; Lemmer U; Bittkau K; Gomard G
    Nanoscale; 2018 Apr; 10(14):6651-6659. PubMed ID: 29582026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.
    van Lare C; Yin G; Polman A; Schmid M
    ACS Nano; 2015 Oct; 9(10):9603-13. PubMed ID: 26348324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
    Ram SK; Desta D; Rizzoli R; Bellettato M; Lyckegaard F; Jensen PB; Jeppesen BR; Chevallier J; Summonte C; Larsen AN; Balling P
    Nanoscale; 2017 Jun; 9(21):7169-7178. PubMed ID: 28513716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles.
    Chen X; Jia B; Saha JK; Cai B; Stokes N; Qiao Q; Wang Y; Shi Z; Gu M
    Nano Lett; 2012 May; 12(5):2187-92. PubMed ID: 22300399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells.
    Deparis O; El Daif O
    Opt Lett; 2012 Oct; 37(20):4230-2. PubMed ID: 23073420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays.
    Liberman V; Parameswaran L; Rothschild M; Ait-El-Aoud Y; Luce A; Okamoto M; Willcox WB; Giardini S; Osgood RM
    Nanotechnology; 2018 Sep; 29(38):385206. PubMed ID: 29956677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies.
    Jovanov V; Palanchoke U; Magnus P; Stiebig H; Hüpkes J; Sichanugrist P; Konagai M; Wiesendanger S; Rockstuhl C; Knipp D
    Opt Express; 2013 Jul; 21 Suppl 4():A595-606. PubMed ID: 24104487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.