These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 22998030)

  • 1. Role of specific cations and water entropy on the stability of branched DNA motif structures.
    Pascal TA; Goddard WA; Maiti PK; Vaidehi N
    J Phys Chem B; 2012 Oct; 116(40):12159-67. PubMed ID: 22998030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of three-way junctions of DNA under molecular crowding conditions.
    Muhuri S; Mimura K; Miyoshi D; Sugimoto N
    J Am Chem Soc; 2009 Jul; 131(26):9268-80. PubMed ID: 19566098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mediating role of multivalent cations in DNA electrostatics: an epsilon-modified Poisson-Boltzmann study of B-DNA-B-DNA interactions in mixture of NaCl and MgCl2 solutions.
    Gavryushov S
    J Phys Chem B; 2009 Feb; 113(7):2160-9. PubMed ID: 19199702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation of a hydroxide anion bridging two divalent magnesium cations in water probed by first-principles metadynamics simulation.
    Park JM; Boero M
    J Phys Chem B; 2010 Sep; 114(34):11102-9. PubMed ID: 20695500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic attraction between DNA and a cationic surfactant aggregate. The screening effect of salt.
    Leal C; Moniri E; Pegado L; Wennerström H
    J Phys Chem B; 2007 May; 111(21):5999-6005. PubMed ID: 17488108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrostatic contribution to the B to Z transition of DNA.
    Misra VK; Honig B
    Biochemistry; 1996 Jan; 35(4):1115-24. PubMed ID: 8573566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy of water in the hydration layer of major and minor grooves of DNA.
    Jana B; Pal S; Maiti PK; Lin ST; Hynes JT; Bagchi B
    J Phys Chem B; 2006 Oct; 110(39):19611-8. PubMed ID: 17004828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA condensation by multivalent cations.
    Bloomfield VA
    Biopolymers; 1997; 44(3):269-82. PubMed ID: 9591479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA structure: what's in charge?
    McConnell KJ; Beveridge DL
    J Mol Biol; 2000 Dec; 304(5):803-20. PubMed ID: 11124028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enthalpic and entropic effects of salt and polyol osmolytes on site-specific protein-DNA association: the integrase Tn916-DNA complex.
    Milev S; Bosshard HR; Jelesarov I
    Biochemistry; 2005 Jan; 44(1):285-93. PubMed ID: 15628870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces driving the binding of homeodomains to DNA.
    Dragan AI; Li Z; Makeyeva EN; Milgotina EI; Liu Y; Crane-Robinson C; Privalov PL
    Biochemistry; 2006 Jan; 45(1):141-51. PubMed ID: 16388589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic effects on the stability of condensed DNA in the presence of divalent cations.
    Duguid JG; Bloomfield VA
    Biophys J; 1996 Jun; 70(6):2838-46. PubMed ID: 8744321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures.
    Pascal TA; Goddard WA
    J Phys Chem B; 2012 Nov; 116(47):13905-12. PubMed ID: 23127123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA junction structure stabilized by molecular crowding conditions.
    Miyoshi D; Muhuri S; Mimura K; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2009; (53):59-60. PubMed ID: 19749259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.