These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Dugyala VR; Basavaraj MG Langmuir; 2014 Jul; 30(29):8680-6. PubMed ID: 25003833 [TBL] [Abstract][Full Text] [Related]
7. Minimal size of coffee ring structure. Shen X; Ho CM; Wong TS J Phys Chem B; 2010 Apr; 114(16):5269-74. PubMed ID: 20353247 [TBL] [Abstract][Full Text] [Related]
8. Pattern recognition for identification of lysozyme droplet solution chemistry. Gorr HM; Xiong Z; Barnard JA Colloids Surf B Biointerfaces; 2014 Mar; 115():170-5. PubMed ID: 24342799 [TBL] [Abstract][Full Text] [Related]
9. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627 [TBL] [Abstract][Full Text] [Related]
10. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness. Anyfantakis M; Baigl D Angew Chem Int Ed Engl; 2014 Dec; 53(51):14077-81. PubMed ID: 25288180 [TBL] [Abstract][Full Text] [Related]
11. Variation of droplet acidity during evaporation. Malevanets A; Consta S J Chem Phys; 2013 May; 138(18):184312. PubMed ID: 23676049 [TBL] [Abstract][Full Text] [Related]
12. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Yunker PJ; Still T; Lohr MA; Yodh AG Nature; 2011 Aug; 476(7360):308-11. PubMed ID: 21850105 [TBL] [Abstract][Full Text] [Related]
13. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Accardo A; Gentile F; Mecarini F; De Angelis F; Burghammer M; Di Fabrizio E; Riekel C Langmuir; 2010 Sep; 26(18):15057-64. PubMed ID: 20804171 [TBL] [Abstract][Full Text] [Related]
14. Effect of suspended particles on the drying process of a carrier-fluid droplet sitting on a solid surface. Kochiya K; Ueno I Ann N Y Acad Sci; 2009 Apr; 1161():234-9. PubMed ID: 19426321 [TBL] [Abstract][Full Text] [Related]
15. Drying of colloidal droplets on superhydrophobic surfaces. Chen L; Evans JR J Colloid Interface Sci; 2010 Nov; 351(1):283-7. PubMed ID: 20692671 [TBL] [Abstract][Full Text] [Related]
17. Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions. Anyfantakis M; Geng Z; Morel M; Rudiuk S; Baigl D Langmuir; 2015 Apr; 31(14):4113-20. PubMed ID: 25797472 [TBL] [Abstract][Full Text] [Related]
18. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
19. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability. Du Z; Guan YX; Yao SJ; Zhu ZQ Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535 [TBL] [Abstract][Full Text] [Related]
20. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Parsa M; Harmand S; Sefiane K; Bigerelle M; Deltombe R Langmuir; 2015 Mar; 31(11):3354-67. PubMed ID: 25742508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]