These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22998077)

  • 1. Nanofluidic ion transport through reconstructed layered materials.
    Raidongia K; Huang J
    J Am Chem Soc; 2012 Oct; 134(40):16528-31. PubMed ID: 22998077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Two-Dimensional Vermiculite Nanofluidic Membranes for Stable Salinity-Gradient Energy Conversion.
    Liu Y; Ding X; Chen L; Tian W; Xu X; Zhang K
    Inorg Chem; 2023 Apr; 62(14):5400-5407. PubMed ID: 36994870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates.
    Chu KS; Kim S; Chung H; Oh JH; Seong TY; An BH; Kim YK; Park JH; Do YR; Kim W
    Nanotechnology; 2010 Oct; 21(42):425302. PubMed ID: 20864783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices.
    Cheng LJ; Guo LJ
    ACS Nano; 2009 Mar; 3(3):575-84. PubMed ID: 19220010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes.
    Xiao K; Giusto P; Wen L; Jiang L; Antonietti M
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10123-10126. PubMed ID: 29939454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide.
    Wu S; Wildhaber F; Vazquez-Mena O; Bertsch A; Brugger J; Renaud P
    Nanoscale; 2012 Sep; 4(18):5718-23. PubMed ID: 22885910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability.
    Shao JJ; Raidongia K; Koltonow AR; Huang J
    Nat Commun; 2015 Jul; 6():7602. PubMed ID: 26165550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Nanochannel Arrays Based on Flexible Montmorillonite Membranes.
    Liu ML; Huang M; Tian LY; Zhao LH; Ding B; Kong DB; Yang QH; Shao JJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44915-44923. PubMed ID: 30509069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanofluidic ion regulation membrane with aligned cellulose nanofibers.
    Li T; Li SX; Kong W; Chen C; Hitz E; Jia C; Dai J; Zhang X; Briber R; Siwy Z; Reed M; Hu L
    Sci Adv; 2019 Feb; 5(2):eaau4238. PubMed ID: 30801009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofluidic devices and their applications.
    Abgrall P; Nguyen NT
    Anal Chem; 2008 Apr; 80(7):2326-41. PubMed ID: 18321133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
    Cheng C; Jiang G; Garvey CJ; Wang Y; Simon GP; Liu JZ; Li D
    Sci Adv; 2016 Feb; 2(2):e1501272. PubMed ID: 26933689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices.
    Jia M; Kong X; Wang L; Zhang Y; Quan D; Ding L; Lu D; Jiang L; Guo W
    Small; 2020 Jan; 16(1):e1905557. PubMed ID: 31805218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors.
    Zhou Y; Chen C; Zhang X; Liu D; Xu L; Dai J; Liou SC; Wang Y; Li C; Xie H; Wu Q; Foster B; Li T; Briber RM; Hu L
    J Am Chem Soc; 2019 Nov; 141(44):17830-17837. PubMed ID: 31647658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions.
    Zhang X; Wen Q; Wang L; Ding L; Yang J; Ji D; Zhang Y; Jiang L; Guo W
    ACS Nano; 2019 Apr; 13(4):4238-4245. PubMed ID: 30865824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and sensing in nanofluidic devices.
    Zhou K; Perry JM; Jacobson SC
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():321-41. PubMed ID: 21456970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks.
    Cheng H; Zhou Y; Feng Y; Geng W; Liu Q; Guo W; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.