These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 22998242)
1. Communication: Beyond the random phase approximation on the cheap: improved correlation energies with the efficient "radial exchange hole" kernel. Gould T J Chem Phys; 2012 Sep; 137(11):111101. PubMed ID: 22998242 [TBL] [Abstract][Full Text] [Related]
2. Electron affinities and ionisation potentials for atoms via "benchmark" tdDFT calculations with and without exchange kernels. Gould T; Dobson JF J Chem Phys; 2013 Jan; 138(1):014109. PubMed ID: 23298030 [TBL] [Abstract][Full Text] [Related]
3. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F; Grüneis A; Bučko T; Hafner J J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253 [TBL] [Abstract][Full Text] [Related]
4. The RPA Atomization Energy Puzzle. Ruzsinszky A; Perdew JP; Csonka GI J Chem Theory Comput; 2010 Jan; 6(1):127-34. PubMed ID: 26614325 [TBL] [Abstract][Full Text] [Related]
5. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Beuerle M; Graf D; Schurkus HF; Ochsenfeld C J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814 [TBL] [Abstract][Full Text] [Related]
6. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation. Nguyen HV; Galli G J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021 [TBL] [Abstract][Full Text] [Related]
7. Insights into the spurious long-range nature of local r-dependent non-local exchange-correlation kernels. Lu D J Chem Phys; 2016 Aug; 145(5):054121. PubMed ID: 27497553 [TBL] [Abstract][Full Text] [Related]
8. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies. Chen GP; Agee MM; Furche F J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213 [TBL] [Abstract][Full Text] [Related]
9. Hybrid functionals including random phase approximation correlation and second-order screened exchange. Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385 [TBL] [Abstract][Full Text] [Related]
10. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation. van Aggelen H; Yang Y; Yang W J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319 [TBL] [Abstract][Full Text] [Related]
11. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
12. Benchmark tests and spin adaptation for the particle-particle random phase approximation. Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290 [TBL] [Abstract][Full Text] [Related]
13. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects. Mussard B; Rocca D; Jansen G; Ángyán JG J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444 [TBL] [Abstract][Full Text] [Related]
14. Developing the random phase approximation into a practical post-Kohn-Sham correlation model. Furche F J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948 [TBL] [Abstract][Full Text] [Related]
15. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel. Dixit A; Ángyán JG; Rocca D J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249 [TBL] [Abstract][Full Text] [Related]
16. A simple but fully nonlocal correction to the random phase approximation. Ruzsinszky A; Perdew JP; Csonka GI J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610 [TBL] [Abstract][Full Text] [Related]
18. A generalized-gradient approximation exchange hole model for dispersion coefficients. Steinmann SN; Corminboeuf C J Chem Phys; 2011 Jan; 134(4):044117. PubMed ID: 21280697 [TBL] [Abstract][Full Text] [Related]
19. Short-range second order screened exchange correction to RPA correlation energies. Beuerle M; Ochsenfeld C J Chem Phys; 2017 Nov; 147(20):204107. PubMed ID: 29195276 [TBL] [Abstract][Full Text] [Related]
20. Range-separated approach to the RPA correlation applied to the van der Waals Bond and to diffusion of defects. Bruneval F Phys Rev Lett; 2012 Jun; 108(25):256403. PubMed ID: 23004628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]