These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22998242)

  • 21. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems.
    Lu D
    J Chem Phys; 2014 May; 140(18):18A520. PubMed ID: 24832328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Interaction-Corrected Random Phase Approximation.
    Ruan S; Ren X; Gould T; Ruzsinszky A
    J Chem Theory Comput; 2021 Apr; 17(4):2107-2115. PubMed ID: 33689324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Third-order corrections to random-phase approximation correlation energies.
    Hesselmann A
    J Chem Phys; 2011 May; 134(20):204107. PubMed ID: 21639424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation energy functional and potential from time-dependent exact-exchange theory.
    Hellgren M; von Barth U
    J Chem Phys; 2010 Jan; 132(4):044101. PubMed ID: 20113013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions.
    Lu D; Nguyen HV; Galli G
    J Chem Phys; 2010 Oct; 133(15):154110. PubMed ID: 20969373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions.
    Neuhauser D; Rabani E; Baer R
    J Phys Chem Lett; 2013 Apr; 4(7):1172-6. PubMed ID: 26282038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.
    Peng D; Steinmann SN; van Aggelen H; Yang W
    J Chem Phys; 2013 Sep; 139(10):104112. PubMed ID: 24050333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions.
    Zhu W; Toulouse J; Savin A; Angyán JG
    J Chem Phys; 2010 Jun; 132(24):244108. PubMed ID: 20590182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Van der waals interactions in molecular assemblies from first-principles calculations.
    Li Y; Lu D; Nguyen HV; Galli G
    J Phys Chem A; 2010 Feb; 114(4):1944-52. PubMed ID: 20043660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties.
    Fernández EM; Balbás LC
    Phys Chem Chem Phys; 2011 Dec; 13(46):20863-70. PubMed ID: 22006277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The random phase approximation applied to ice.
    Macher M; Klimeš J; Franchini C; Kresse G
    J Chem Phys; 2014 Feb; 140(8):084502. PubMed ID: 24588180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the reference state in long-range random phase approximation correlation.
    Janesko BG; Scuseria GE
    J Chem Phys; 2009 Oct; 131(15):154106. PubMed ID: 20568846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Short-Range Behavior of Correlated Pair Functions from the Adiabatic-Connection Fluctuation-Dissipation Theorem of Density-Functional Theory.
    Heßelmann A; Görling A
    J Chem Theory Comput; 2013 Oct; 9(10):4382-95. PubMed ID: 26589155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms.
    Jiang H; Engel E
    J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Describing static correlation in bond dissociation by Kohn-Sham density functional theory.
    Fuchs M; Niquet YM; Gonze X; Burke K
    J Chem Phys; 2005 Mar; 122(9):094116. PubMed ID: 15836121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tension between predicting accurate ground state correlation energies and excitation energies from adiabatic approximations in TDDFT.
    Everhart LM; Derteano JA; Bates JE
    J Chem Phys; 2022 Feb; 156(8):084116. PubMed ID: 35232189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.