These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22998570)

  • 1. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials.
    Campagnolo L; Massimiani M; Magrini A; Camaioni A; Pietroiusti A
    Curr Med Chem; 2012; 19(26):4488-94. PubMed ID: 22998570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered nanomaterials: an emerging class of novel endocrine disruptors.
    Larson JK; Carvan MJ; Hutz RJ
    Biol Reprod; 2014 Jul; 91(1):20. PubMed ID: 24899576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.
    Das J; Choi YJ; Song H; Kim JH
    Hum Reprod Update; 2016 Sep; 22(5):588-619. PubMed ID: 27385359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Health implications of engineered nanomaterials.
    Pietroiusti A
    Nanoscale; 2012 Feb; 4(4):1231-47. PubMed ID: 22278373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproductive and developmental toxicity studies of manufactured nanomaterials.
    Ema M; Kobayashi N; Naya M; Hanai S; Nakanishi J
    Reprod Toxicol; 2010 Nov; 30(3):343-52. PubMed ID: 20600821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations.
    Shaw BJ; Liddle CC; Windeatt KM; Handy RD
    Arch Toxicol; 2016 Sep; 90(9):2077-2107. PubMed ID: 27318802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput COPAS assay for screening of developmental and reproductive toxicity of nanoparticles using the nematode Caenorhabditis elegans.
    Kim M; Jeong J; Kim H; Choi J
    J Appl Toxicol; 2019 Oct; 39(10):1470-1479. PubMed ID: 31287177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM).
    Westmeier D; Stauber RH; Docter D
    Toxicol Appl Pharmacol; 2016 May; 299():53-7. PubMed ID: 26592323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment.
    De Marchi L; Coppola F; Soares AMVM; Pretti C; Monserrat JM; Torre CD; Freitas R
    Environ Res; 2019 Nov; 178():108683. PubMed ID: 31539823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental toxicity of engineered nanomaterials in rodents.
    Ema M; Gamo M; Honda K
    Toxicol Appl Pharmacol; 2016 May; 299():47-52. PubMed ID: 26721308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heritable effects of nanotoxicity.
    Tortiglione C
    Nanomedicine (Lond); 2014 Dec; 9(18):2829-41. PubMed ID: 25688411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants.
    Liu Y; Nie Y; Wang J; Wang J; Wang X; Chen S; Zhao G; Wu L; Xu A
    Ecotoxicol Environ Saf; 2018 Oct; 162():92-102. PubMed ID: 29990744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotoxicity: the growing need for in vivo study.
    Fischer HC; Chan WC
    Curr Opin Biotechnol; 2007 Dec; 18(6):565-71. PubMed ID: 18160274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current approaches for safer design of engineered nanomaterials.
    Hwang R; Mirshafiee V; Zhu Y; Xia T
    Ecotoxicol Environ Saf; 2018 Dec; 166():294-300. PubMed ID: 30273853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.