BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 22998605)

  • 61. Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae.
    Li QG; Zhang L; Li C; Dunwell JM; Zhang YM
    Mol Biol Evol; 2013 Dec; 30(12):2602-11. PubMed ID: 24008584
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The rhizobial autotransporter determines the symbiotic nitrogen fixation activity of
    Shimoda Y; Nishigaya Y; Yamaya-Ito H; Inagaki N; Umehara Y; Hirakawa H; Sato S; Yamazaki T; Hayashi M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1806-1815. PubMed ID: 31900357
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application.
    Chen WF; Wang ET; Ji ZJ; Zhang JJ
    J Appl Microbiol; 2021 Aug; 131(2):553-563. PubMed ID: 33300250
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia.
    Lindström K; Murwira M; Willems A; Altier N
    Res Microbiol; 2010; 161(6):453-63. PubMed ID: 20685242
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitric oxide detoxification in the rhizobia-legume symbiosis.
    Sánchez C; Cabrera JJ; Gates AJ; Bedmar EJ; Richardson DJ; Delgado MJ
    Biochem Soc Trans; 2011 Jan; 39(1):184-8. PubMed ID: 21265770
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis.
    Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C
    Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microscopic and Transcriptomic Analyses of Dalbergoid Legume Peanut Reveal a Divergent Evolution Leading to Nod-Factor-Dependent Epidermal Crack-Entry and Terminal Bacteroid Differentiation.
    Raul B; Bhattacharjee O; Ghosh A; Upadhyay P; Tembhare K; Singh A; Shaheen T; Ghosh AK; Torres-Jerez I; Krom N; Clevenger J; Udvardi M; Scheffler BE; Ozias-Akins P; Sharma RD; Bandyopadhyay K; Gaur V; Kumar S; Sinharoy S
    Mol Plant Microbe Interact; 2022 Feb; 35(2):131-145. PubMed ID: 34689599
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1.
    Ribeiro CW; Baldacci-Cresp F; Pierre O; Larousse M; Benyamina S; Lambert A; Hopkins J; Castella C; Cazareth J; Alloing G; Boncompagni E; Couturier J; Mergaert P; Gamas P; Rouhier N; Montrichard F; Frendo P
    Curr Biol; 2017 Jan; 27(2):250-256. PubMed ID: 28017611
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules.
    Pierre O; Engler G; Hopkins J; Brau F; Boncompagni E; Hérouart D
    Plant Cell Environ; 2013 Nov; 36(11):2059-70. PubMed ID: 23586685
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts.
    Ossler JN; Zielinski CA; Heath KD
    Am J Bot; 2015 Aug; 102(8):1332-41. PubMed ID: 26290556
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plant science. Unlocking the door to invasion.
    Kereszt A; Kondorosi E
    Science; 2011 Feb; 331(6019):865-6. PubMed ID: 21330522
    [No Abstract]   [Full Text] [Related]  

  • 72. [Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review].
    Glian'ko AK; Vasil'eva GG
    Prikl Biokhim Mikrobiol; 2010; 46(1):21-8. PubMed ID: 20198912
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils].
    Wei G; Ma Z
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis.
    Gully D; Gargani D; Bonaldi K; Grangeteau C; Chaintreuil C; Fardoux J; Nguyen P; Marchetti R; Nouwen N; Molinaro A; Mergaert P; Giraud E
    Mol Plant Microbe Interact; 2016 Jun; 29(6):447-57. PubMed ID: 26959836
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modulation of Quorum Sensing as an Adaptation to Nodule Cell Infection during Experimental Evolution of Legume Symbionts.
    Tang M; Bouchez O; Cruveiller S; Masson-Boivin C; Capela D
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992622
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Competition between rhizobia under different environmental conditions affects the nodulation of a legume.
    Ji ZJ; Yan H; Cui QG; Wang ET; Chen WF; Chen WX
    Syst Appl Microbiol; 2017 Mar; 40(2):114-119. PubMed ID: 28063627
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rhizobia utilize pathogen-like effector proteins during symbiosis.
    Kambara K; Ardissone S; Kobayashi H; Saad MM; Schumpp O; Broughton WJ; Deakin WJ
    Mol Microbiol; 2009 Jan; 71(1):92-106. PubMed ID: 19019163
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Legume Nodules: Massive Infection in the Absence of Defense Induction.
    Berrabah F; Ratet P; Gourion B
    Mol Plant Microbe Interact; 2019 Jan; 32(1):35-44. PubMed ID: 30252618
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in Medicago.
    Zhang S; Wang T; Lima RM; Pettkó-Szandtner A; Kereszt A; Downie JA; Kondorosi E
    Nat Plants; 2023 Feb; 9(2):280-288. PubMed ID: 36624259
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tough love: accommodating intracellular bacteria through directed secretion of antimicrobial peptides during the nitrogen-fixing symbiosis.
    Stonoha-Arther C; Wang D
    Curr Opin Plant Biol; 2018 Aug; 44():155-163. PubMed ID: 29778978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.