These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 22998608)
1. A systematic investigation into the nature of tryptic HCD spectra. Michalski A; Neuhauser N; Cox J; Mann M J Proteome Res; 2012 Nov; 11(11):5479-91. PubMed ID: 22998608 [TBL] [Abstract][Full Text] [Related]
2. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. Frese CK; Altelaar AF; Hennrich ML; Nolting D; Zeller M; Griep-Raming J; Heck AJ; Mohammed S J Proteome Res; 2011 May; 10(5):2377-88. PubMed ID: 21413819 [TBL] [Abstract][Full Text] [Related]
3. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra. de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076 [TBL] [Abstract][Full Text] [Related]
4. pNovo: de novo peptide sequencing and identification using HCD spectra. Chi H; Sun RX; Yang B; Song CQ; Wang LH; Liu C; Fu Y; Yuan ZF; Wang HP; He SM; Dong MQ J Proteome Res; 2010 May; 9(5):2713-24. PubMed ID: 20329752 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometric de novo sequencing of natural non-tryptic peptides: comparing peculiarities of collision-induced dissociation (CID) and high energy collision dissociation (HCD). Samgina TY; Vorontsov EA; Gorshkov VA; Artemenko KA; Zubarev RA; Lebedev AT Rapid Commun Mass Spectrom; 2014 Dec; 28(23):2595-604. PubMed ID: 25366406 [TBL] [Abstract][Full Text] [Related]
7. Analysis of low complex region peptides derived from mollusk shell matrix proteins using CID, high-energy collisional dissociation, and electron transfer dissociation on an LTQ-orbitrap: implications for peptide to spectrum match. Marie A; Alves S; Marie B; Dubost L; Bédouet L; Berland S Proteomics; 2012 Oct; 12(19-20):3069-75. PubMed ID: 22888092 [TBL] [Abstract][Full Text] [Related]
8. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Segu ZM; Mechref Y Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591 [TBL] [Abstract][Full Text] [Related]
9. Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. Dayon L; Pasquarello C; Hoogland C; Sanchez JC; Scherl A J Proteomics; 2010 Feb; 73(4):769-77. PubMed ID: 19903544 [TBL] [Abstract][Full Text] [Related]
10. Statistical characterization of HCD fragmentation patterns of tryptic peptides on an LTQ Orbitrap Velos mass spectrometer. Shao C; Zhang Y; Sun W J Proteomics; 2014 Sep; 109():26-37. PubMed ID: 24981973 [TBL] [Abstract][Full Text] [Related]
11. Reduction in database search space by utilization of amino acid composition information from electron transfer dissociation and higher-energy collisional dissociation mass spectra. Hansen TA; Kryuchkov F; Kjeldsen F Anal Chem; 2012 Aug; 84(15):6638-45. PubMed ID: 22799558 [TBL] [Abstract][Full Text] [Related]
12. Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ Orbitrap XL electron transfer dissociation hybrid mass spectrometer. Ye H; Boyne MT; Buhse LF; Hill J Anal Chem; 2013 Feb; 85(3):1531-9. PubMed ID: 23249142 [TBL] [Abstract][Full Text] [Related]
13. pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. Chi H; Chen H; He K; Wu L; Yang B; Sun RX; Liu J; Zeng WF; Song CQ; He SM; Dong MQ J Proteome Res; 2013 Feb; 12(2):615-25. PubMed ID: 23272783 [TBL] [Abstract][Full Text] [Related]
14. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry. Cahill MG; Caprioli G; Vittori S; James KJ J Mass Spectrom; 2010 Sep; 45(9):1019-25. PubMed ID: 20641001 [TBL] [Abstract][Full Text] [Related]
15. An experimental approach to enhance precursor ion fragmentation for metabolite identification studies: application of dual collision cells in an orbital trap. Bushee JL; Argikar UA Rapid Commun Mass Spectrom; 2011 May; 25(10):1356-62. PubMed ID: 21504000 [TBL] [Abstract][Full Text] [Related]
16. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955 [TBL] [Abstract][Full Text] [Related]
17. A novel approach for quantitative peptides analysis by selected electron transfer reaction monitoring. Wei BY; Juang YM; Lai CC J Chromatogr A; 2010 Oct; 1217(44):6927-31. PubMed ID: 20850119 [TBL] [Abstract][Full Text] [Related]
18. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. Singh C; Zampronio CG; Creese AJ; Cooper HJ J Proteome Res; 2012 Sep; 11(9):4517-25. PubMed ID: 22800195 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. Ichou F; Schwarzenberg A; Lesage D; Alves S; Junot C; Machuron-Mandard X; Tabet JC J Mass Spectrom; 2014 Jun; 49(6):498-508. PubMed ID: 24913402 [TBL] [Abstract][Full Text] [Related]
20. N-terminal sequence tagging using reliably determined b2 ions: a useful approach to deconvolute tandem mass spectra of co-fragmented peptides in proteomics. Kryuchkov F; Verano-Braga T; Kjeldsen F J Proteomics; 2014 May; 103():254-60. PubMed ID: 24726481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]