BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22998634)

  • 1. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study.
    Banáš P; Sklenovský P; Wedekind JE; Šponer J; Otyepka M
    J Phys Chem B; 2012 Oct; 116(42):12721-34. PubMed ID: 22998634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
    Gong Z; Zhao Y; Chen C; Xiao Y
    PLoS One; 2012; 7(9):e45239. PubMed ID: 23028870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase.
    Klein DJ; Edwards TE; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2009 Mar; 16(3):343-4. PubMed ID: 19234468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Large RNAs and RNA-Protein Complexes: Toward Structure Determination of Riboswitches.
    Grigg JC; Ke A
    Methods Enzymol; 2015; 558():213-232. PubMed ID: 26068743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of preQ
    Warnasooriya C; Ling C; Belashov IA; Salim M; Wedekind JE; Ermolenko DN
    RNA Biol; 2019 Sep; 16(9):1086-1092. PubMed ID: 30328747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation.
    Schroeder GM; Dutta D; Cavender CE; Jenkins JL; Pritchett EM; Baker CD; Ashton JM; Mathews DH; Wedekind JE
    Nucleic Acids Res; 2020 Aug; 48(14):8146-8164. PubMed ID: 32597951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography.
    Stagno JR; Liu Y; Bhandari YR; Conrad CE; Panja S; Swain M; Fan L; Nelson G; Li C; Wendel DR; White TA; Coe JD; Wiedorn MO; Knoska J; Oberthuer D; Tuckey RA; Yu P; Dyba M; Tarasov SG; Weierstall U; Grant TD; Schwieters CD; Zhang J; Ferré-D'Amaré AR; Fromme P; Draper DE; Liang M; Hunter MS; Boutet S; Tan K; Zuo X; Ji X; Barty A; Zatsepin NA; Chapman HN; Spence JC; Woodson SA; Wang YX
    Nature; 2017 Jan; 541(7636):242-246. PubMed ID: 27841871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
    Kang M; Peterson R; Feigon J
    Mol Cell; 2009 Mar; 33(6):784-90. PubMed ID: 19285444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.