These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 22998815)
41. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system. Leong W; Kremer A; Wang DA Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():644-9. PubMed ID: 27040260 [TBL] [Abstract][Full Text] [Related]
42. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model. Xu XX; Liu C; Liu Y; Li N; Guo X; Wang SJ; Sun GW; Wang W; Ma XJ Exp Cell Res; 2013 Aug; 319(14):2135-44. PubMed ID: 23707395 [TBL] [Abstract][Full Text] [Related]
43. [Non-small cell lung cancer 95D cells co-cultured with 3D-bioprinted scaffold to construct a lung cancer model in vitro]. Mou H; Wang J; Hu H; Xu W; Chen Q Zhonghua Zhong Liu Za Zhi; 2015 Oct; 37(10):736-40. PubMed ID: 26813591 [TBL] [Abstract][Full Text] [Related]
44. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. Sun D; Liu Y; Wang H; Deng F; Zhang Y; Zhao S; Ma X; Wu H; Sun G Int J Biol Macromol; 2018 Apr; 109():1154-1163. PubMed ID: 29157906 [TBL] [Abstract][Full Text] [Related]
46. Vascular endothelial growth factor release from alginate microspheres under simulated physiological compressive loading and the effect on human vascular endothelial cells. Li Q; Hou T; Zhao J; Xu J Tissue Eng Part A; 2011 Jul; 17(13-14):1777-85. PubMed ID: 21341993 [TBL] [Abstract][Full Text] [Related]
47. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody-Based Therapeutics in Overcoming Chemoresistance. Kletzmayr A; Clement Frey F; Zimmermann M; Eberli D; Millan C Biotechnol J; 2020 May; 15(5):e1900439. PubMed ID: 32028540 [TBL] [Abstract][Full Text] [Related]
48. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. DelNero P; Lane M; Verbridge SS; Kwee B; Kermani P; Hempstead B; Stroock A; Fischbach C Biomaterials; 2015 Jul; 55():110-8. PubMed ID: 25934456 [TBL] [Abstract][Full Text] [Related]
49. Enhanced liver functions of HepG2 cells in the alginate/xyloglucan scaffold. Deng X; Cao Y; Yan H; Yang J; Xiong G; Yao H; Qi C Biotechnol Lett; 2015 Jan; 37(1):235-40. PubMed ID: 25208748 [TBL] [Abstract][Full Text] [Related]
50. Establishment of an Ye Q; Wang J; Wang B; Zhao M; Wu Z; Liu X Technol Cancer Res Treat; 2024; 23():15330338241286755. PubMed ID: 39311637 [TBL] [Abstract][Full Text] [Related]
51. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
52. Matrix stiffness in three-dimensional systems effects on the behavior of C3A cells. Huang X; Hang R; Wang X; Lin N; Zhang X; Tang B Artif Organs; 2013 Feb; 37(2):166-74. PubMed ID: 23067437 [TBL] [Abstract][Full Text] [Related]
53. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Guo H; Lai Q; Wang W; Wu Y; Zhang C; Liu Y; Yuan Z Int J Pharm; 2013 Jul; 451(1-2):1-11. PubMed ID: 23618965 [TBL] [Abstract][Full Text] [Related]
54. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices. Casey A; Gargotti M; Bonnier F; Byrne HJ Toxicol In Vitro; 2016 Jun; 33():99-104. PubMed ID: 26930252 [TBL] [Abstract][Full Text] [Related]
55. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. Xue M; Wei W; Su Y; Kim J; Shin YS; Mai WX; Nathanson DA; Heath JR J Am Chem Soc; 2015 Apr; 137(12):4066-9. PubMed ID: 25789560 [TBL] [Abstract][Full Text] [Related]
56. pH-sensitive Laponite(®)/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Gonçalves M; Figueira P; Maciel D; Rodrigues J; Qu X; Liu C; Tomás H; Li Y Acta Biomater; 2014 Jan; 10(1):300-7. PubMed ID: 24075886 [TBL] [Abstract][Full Text] [Related]
57. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
58. Reprint of: A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. Shah UK; Mallia JO; Singh N; Chapman KE; Doak SH; Jenkins GJS Mutat Res Genet Toxicol Environ Mutagen; 2018 Oct; 834():35-41. PubMed ID: 30173862 [TBL] [Abstract][Full Text] [Related]
59. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells. Hara J; Tottori J; Anders M; Dadhwal S; Asuri P; Mobed-Miremadi M Artif Cells Nanomed Biotechnol; 2017 May; 45(3):609-616. PubMed ID: 27050441 [TBL] [Abstract][Full Text] [Related]
60. Human hepatoma cell lines on gas foaming templated alginate scaffolds for in vitro drug-drug interaction and metabolism studies. Stampella A; Rizzitelli G; Donati F; Mazzarino M; de la Torre X; Botrè F; Giardi MF; Dentini M; Barbetta A; Massimi M Toxicol In Vitro; 2015 Dec; 30(1 Pt B):331-40. PubMed ID: 26456671 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]