BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22999049)

  • 1. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.
    Kim D; Lee D; Kim J; Moon J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5408-15. PubMed ID: 22999049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries.
    Zhu J; Lei D; Zhang G; Li Q; Lu B; Wang T
    Nanoscale; 2013 Jun; 5(12):5499-505. PubMed ID: 23670638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes.
    Bonino CA; Ji L; Lin Z; Toprakci O; Zhang X; Khan SA
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2534-42. PubMed ID: 21615138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface chemistry engineering of protein-directed SnO₂ nanocrystal-based anode for lithium-ion batteries with improved performance.
    Wang L; Wang D; Dong Z; Zhang F; Jin J
    Small; 2014 Mar; 10(5):998-1007. PubMed ID: 24170365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of TiO₂(B) nanowire cores into SnO₂/carbon nanoparticle shells and their high performance in lithium storage.
    Yang Z; Du G; Guo Z; Yu X; Chen Z; Guo T; Zeng R
    Nanoscale; 2011 Oct; 3(10):4440-7. PubMed ID: 21927742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.
    Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y
    Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pipe-Wire TiO
    Mao M; Yan F; Cui C; Ma J; Zhang M; Wang T; Wang C
    Nano Lett; 2017 Jun; 17(6):3830-3836. PubMed ID: 28475340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers.
    Li W; Zeng L; Yang Z; Gu L; Wang J; Liu X; Cheng J; Yu Y
    Nanoscale; 2014 Jan; 6(2):693-8. PubMed ID: 24356437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries.
    Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D
    Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.
    Lim AH; Shim HW; Seo SD; Lee GH; Park KS; Kim DW
    Nanoscale; 2012 Aug; 4(15):4694-701. PubMed ID: 22740101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries.
    Hu R; Sun W; Liu H; Zeng M; Zhu M
    Nanoscale; 2013 Dec; 5(23):11971-9. PubMed ID: 24136654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SnO₂-based nanomaterials: synthesis and application in lithium-ion batteries.
    Chen JS; Lou XW
    Small; 2013 Jun; 9(11):1877-93. PubMed ID: 23386368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material.
    Cherian CT; Sundaramurthy J; Reddy MV; Suresh Kumar P; Mani K; Pliszka D; Sow CH; Ramakrishna S; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9957-63. PubMed ID: 24099146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible, Freestanding, and Binder-free SnO(x)-ZnO/Carbon Nanofiber Composites for Lithium Ion Battery Anodes.
    Joshi BN; An S; Jo HS; Song KY; Park HG; Hwang S; Al-Deyab SS; Yoon WY; Yoon SS
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9446-53. PubMed ID: 26999581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.