BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22999170)

  • 1. Natural rubber biosynthesis in plants: rubber transferase.
    Cornish K; Xie W
    Methods Enzymol; 2012; 515():63-82. PubMed ID: 22999170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor.
    da Costa BM; Keasling JD; Cornish K
    Biomacromolecules; 2005; 6(1):279-89. PubMed ID: 15638531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Mechanisms of Natural Rubber Biosynthesis.
    Yamashita S; Takahashi S
    Annu Rev Biochem; 2020 Jun; 89():821-851. PubMed ID: 32228045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.
    Rojruthai P; Sakdapipanich JT; Takahashi S; Hyegin L; Noike M; Koyama T; Tanaka Y
    J Biosci Bioeng; 2010 Feb; 109(2):107-14. PubMed ID: 20129092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree.
    Kang H; Kang MY; Han KH
    Plant Physiol; 2000 Jul; 123(3):1133-42. PubMed ID: 10889262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of isoprenoids for natural rubber biosynthesis in natural rubber latex by liquid chromatography with tandem mass spectrometry.
    Zhang X; Guo T; Xiang T; Dong Y; Zhang J; Zhang L
    J Chromatogr A; 2018 Jul; 1558():115-119. PubMed ID: 29773339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.
    Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK
    Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction and characterization of a natural rubber from Euphorbia characias latex.
    Spanò D; Pintus F; Mascia C; Scorciapino MA; Casu M; Floris G; Medda R
    Biopolymers; 2012 Aug; 97(8):589-94. PubMed ID: 22605550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant role of bacterial undecaprenyl diphosphate (C55-UPP) for rubber synthesis by Hevea latex enzymes.
    Rattanapittayaporn A; Wititsuwannakul D; Wititsuwannakul R
    Macromol Biosci; 2004 Nov; 4(11):1039-52. PubMed ID: 15543542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis.
    Scholte AA; Vederas JC
    Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of a prenyltransferase that elongates cis-polyisoprene rubber from the latex of Hevea brasiliensis.
    Light DR; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18589-97. PubMed ID: 2808388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase.
    Mau CJ; Garneau S; Scholte AA; Van Fleet JE; Vederas JC; Cornish K
    Eur J Biochem; 2003 Oct; 270(19):3939-45. PubMed ID: 14511375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum.
    Post J; van Deenen N; Fricke J; Kowalski N; Wurbs D; Schaller H; Eisenreich W; Huber C; Twyman RM; Prüfer D; Gronover CS
    Plant Physiol; 2012 Mar; 158(3):1406-17. PubMed ID: 22238421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and characterization of latex and natural rubber from rubber-bearing plants.
    Buranov AU; Elmuradov BJ
    J Agric Food Chem; 2010 Jan; 58(2):734-43. PubMed ID: 20000314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species.
    Cornish K; Scott DJ; Xie W; Mau CJD; Zheng YF; Liu XH; Prestwich GD
    Phytochemistry; 2018 Dec; 156():55-72. PubMed ID: 30195165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.
    Scott DJ; da Costa BM; Espy SC; Keasling JD; Cornish K
    Phytochemistry; 2003 Sep; 64(1):123-34. PubMed ID: 12946411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield.
    Kongsawadworakul P; Viboonjun U; Romruensukharom P; Chantuma P; Ruderman S; Chrestin H
    Phytochemistry; 2009 Apr; 70(6):730-9. PubMed ID: 19409582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different reaction mechanisms for cis- and trans-prenyltransferases.
    Lu YP; Liu HG; Liang PH
    Biochem Biophys Res Commun; 2009 Feb; 379(2):351-5. PubMed ID: 19103164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles.
    Pan Z; Herickhoff L; Backhaus RA
    Arch Biochem Biophys; 1996 Aug; 332(1):196-204. PubMed ID: 8806726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray.
    da Costa BM; Keasling JD; McMahan CM; Cornish K
    Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.