These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 22999286)
21. Association between antimicrobial use and antimicrobial resistance of Streptococcus uberis causing clinical mastitis. Martins L; Gonçalves JL; Leite RF; Tomazi T; Rall VLM; Santos MV J Dairy Sci; 2021 Nov; 104(11):12030-12041. PubMed ID: 34389143 [TBL] [Abstract][Full Text] [Related]
22. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. de Jong A; Garch FE; Simjee S; Moyaert H; Rose M; Youala M; Siegwart E; Vet Microbiol; 2018 Jan; 213():73-81. PubMed ID: 29292007 [TBL] [Abstract][Full Text] [Related]
23. In vitro susceptibility of bovine mastitis pathogens to a combination of penicillin and framycetin: development of interpretive criteria for testing by broth microdilution and disk diffusion. Pillar CM; Stoneburner A; Shinabarger DL; Abbeloos E; Goby L; Bradley AJ J Dairy Sci; 2014 Oct; 97(10):6594-607. PubMed ID: 25129497 [TBL] [Abstract][Full Text] [Related]
24. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results. Thomas V; de Jong A; Moyaert H; Simjee S; El Garch F; Morrissey I; Marion H; Vallé M Int J Antimicrob Agents; 2015 Jul; 46(1):13-20. PubMed ID: 26003836 [TBL] [Abstract][Full Text] [Related]
25. Antibiograms of streptococci isolated from bovine intramammary infections. McDonald JS; McDonald TJ; Stark DR Am J Vet Res; 1976 Oct; 37(10):1185-8. PubMed ID: 791026 [TBL] [Abstract][Full Text] [Related]
26. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections. Leelahapongsathon K; Schukken YH; Pinyopummintr T; Suriyasathaporn W J Dairy Sci; 2016 Feb; 99(2):1418-1426. PubMed ID: 26686709 [TBL] [Abstract][Full Text] [Related]
27. Minimum inhibitory concentrations and disk diffusion zone diameter for selected antibiotics against streptococci isolated from bovine intramammary infections. Owens WE; Watts JL; Greene BB; Ray CH J Dairy Sci; 1990 May; 73(5):1225-31. PubMed ID: 2365883 [TBL] [Abstract][Full Text] [Related]
28. Streptococci isolated from bovine intramammary infections. McDonald TJ; McDonald JS Am J Vet Res; 1976 Apr; 37(4):377-81. PubMed ID: 817626 [TBL] [Abstract][Full Text] [Related]
29. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Ding Y; Zhao J; He X; Li M; Guan H; Zhang Z; Li P Pharm Biol; 2016; 54(1):162-7. PubMed ID: 25856704 [TBL] [Abstract][Full Text] [Related]
30. Cross-infection between cats and cows: origin and control of Streptococcus canis mastitis in a dairy herd. Tikofsky LL; Zadoks RN J Dairy Sci; 2005 Aug; 88(8):2707-13. PubMed ID: 16027183 [TBL] [Abstract][Full Text] [Related]
31. Extended ceftiofur therapy for treatment of experimentally-induced Streptococcus uberis mastitis in lactating dairy cattle. Oliver SP; Almeida RA; Gillespie BE; Headrick SJ; Dowlen HH; Johnson DL; Lamar KC; Chester ST; Moseley WM J Dairy Sci; 2004 Oct; 87(10):3322-9. PubMed ID: 15377611 [TBL] [Abstract][Full Text] [Related]
32. Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. Chaneton L; Tirante L; Maito J; Chaves J; Bussmann LE J Dairy Sci; 2008 May; 91(5):1865-73. PubMed ID: 18420617 [TBL] [Abstract][Full Text] [Related]
33. Evaluating the in vitro susceptibility of bovine mastitis pathogens to a combination of kanamycin and cefalexin: Recommendations for a disk diffusion test. Pillar CM; Goby L; Draghi D; Grover P; Thornsberry C J Dairy Sci; 2009 Dec; 92(12):6217-27. PubMed ID: 19923627 [TBL] [Abstract][Full Text] [Related]
35. Assessment of an extraction protocol to detect the major mastitis-causing pathogens in bovine milk. Cressier B; Bissonnette N J Dairy Sci; 2011 May; 94(5):2171-84. PubMed ID: 21524507 [TBL] [Abstract][Full Text] [Related]
36. Liu K; Liu X; Yang J; Gu X; Zhang L; Qu W Front Cell Infect Microbiol; 2024; 14():1417299. PubMed ID: 39295731 [No Abstract] [Full Text] [Related]
37. Efficacy of extended pirlimycin therapy for treatment of experimentally induced Streptococcus uberis intramammary infections in lactating dairy cattle. Oliver SP; Almeida RA; Gillespie BE; Ivey SJ; Moorehead H; Lunn P; Dowlen HH; Johnson DL; Lamar KC Vet Ther; 2003; 4(3):299-308. PubMed ID: 15136992 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous detection of mastitis pathogens, Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae by multiplex real-time polymerase chain reaction. Gillespie BE; Oliver SP J Dairy Sci; 2005 Oct; 88(10):3510-8. PubMed ID: 16162525 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of the Rapid Strep system for identification of gram-positive, catalase-negative cocci isolated from bovine intramammary infections. Watts JL J Dairy Sci; 1989 Oct; 72(10):2728-32. PubMed ID: 2689485 [TBL] [Abstract][Full Text] [Related]
40. Comparison of antibiotic resistance of udder pathogens in dairy cows kept on organic and on conventional farms. Roesch M; Perreten V; Doherr MG; Schaeren W; Schällibaum M; Blum JW J Dairy Sci; 2006 Mar; 89(3):989-97. PubMed ID: 16507693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]