These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 22999377)

  • 1. Predicting multiple step placements for human balance recovery tasks.
    Aftab Z; Robert T; Wieber PB
    J Biomech; 2012 Nov; 45(16):2804-9. PubMed ID: 22999377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations.
    Weerdesteyn V; Laing AC; Robinovitch SN
    Gait Posture; 2012 Mar; 35(3):462-6. PubMed ID: 22196309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stumbling with optimal phase reset during gait can prevent a humanoid from falling.
    Nakanishi M; Nomura T; Sato S
    Biol Cybern; 2006 Nov; 95(5):503-15. PubMed ID: 16969676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical and age-related differences in balance recovery using the tether-release method.
    Hsiao-Wecksler ET
    J Electromyogr Kinesiol; 2008 Apr; 18(2):179-87. PubMed ID: 17681793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human foot placement and balance in the sagittal plane.
    Millard M; Wight D; McPhee J; Kubica E; Wang D
    J Biomech Eng; 2009 Dec; 131(12):121001. PubMed ID: 20524724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online mutability of step direction during rapid stepping reactions evoked by postural perturbation.
    Tripp BP; McIlroy WE; Maki BE
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):140-52. PubMed ID: 15068197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting foot placement for balance through a simple model with swing leg dynamics.
    Zhang L; Fu C
    J Biomech; 2018 Aug; 77():155-162. PubMed ID: 30029774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    Phys Ther; 2010 Apr; 90(4):476-91. PubMed ID: 20167644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of compensatory stepping skills in children.
    Roncesvalles MN; Woollacott MH; Jensen JL
    J Mot Behav; 2000 Mar; 32(1):100-11. PubMed ID: 11008275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults.
    Hurt CP; Rosenblatt N; Crenshaw JR; Grabiner MD
    Gait Posture; 2010 Apr; 31(4):461-4. PubMed ID: 20185314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balance Recovery Prediction with Multiple Strategies for Standing Humans.
    Aftab Z; Robert T; Wieber PB
    PLoS One; 2016; 11(3):e0151166. PubMed ID: 26974820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of whole-body frontal plane balance varies within a step during unperturbed walking.
    Sawers A; Hahn ME
    Gait Posture; 2012 Jun; 36(2):322-4. PubMed ID: 22465707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sensory inputs and motor demands on the control of the centre of mass velocity during gait initiation in humans.
    Chastan N; Westby GW; du Montcel ST; Do MC; Chong RK; Agid Y; Welter ML
    Neurosci Lett; 2010 Jan; 469(3):400-4. PubMed ID: 20026383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the center of mass velocity control during walking.
    Chong RK; Chastan N; Welter ML; Do MC
    Neurosci Lett; 2009 Jul; 458(1):23-7. PubMed ID: 19442871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diminished stepping responses lead to a fall following a novel slip induced during a sit-to-stand.
    Pavol MJ; Runtz EF; Pai YC
    Gait Posture; 2004 Oct; 20(2):154-62. PubMed ID: 15336285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balance responses to lateral perturbations in human treadmill walking.
    Hof AL; Vermerris SM; Gjaltema WA
    J Exp Biol; 2010 Aug; 213(Pt 15):2655-64. PubMed ID: 20639427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy analysis of human stumbling: the limitations of recovery.
    Forner Cordero A; Koopman HJ; van der Helm FC
    Gait Posture; 2005 Apr; 21(3):243-54. PubMed ID: 15760739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.