BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22999378)

  • 1. Rapidly relocating molecules between organelles to manipulate small GTPase activity.
    Phua SC; Pohlmeyer C; Inoue T
    ACS Chem Biol; 2012 Dec; 7(12):1950-5. PubMed ID: 22999378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.
    Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P
    Elife; 2020 Nov; 9():. PubMed ID: 33174843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal imaging of small GTPases activity in live cells.
    Voss S; Krüger DM; Koch O; Wu YW
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14348-14353. PubMed ID: 27911813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.
    Nakamura T; Kurokawa K; Kiyokawa E; Matsuda M
    Methods Enzymol; 2006; 406():315-32. PubMed ID: 16472667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic timing: a novel mechanism that improves the accuracy of GTPase timers in endosome fusion and other biological processes.
    Li G; Qian H
    Traffic; 2002 Apr; 3(4):249-55. PubMed ID: 11929606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.
    DeRose R; Pohlmeyer C; Umeda N; Ueno T; Nagano T; Kuo S; Inoue T
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis.
    Tang T; Zheng B; Chen SH; Murphy AN; Kudlicka K; Zhou H; Farquhar MG
    J Biol Chem; 2009 Feb; 284(8):5414-24. PubMed ID: 19103604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation.
    Missy K; Van Poucke V; Raynal P; Viala C; Mauco G; Plantavid M; Chap H; Payrastre B
    J Biol Chem; 1998 Nov; 273(46):30279-86. PubMed ID: 9804788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation.
    Itoh T; Fujita N; Kanno E; Yamamoto A; Yoshimori T; Fukuda M
    Mol Biol Cell; 2008 Jul; 19(7):2916-25. PubMed ID: 18448665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes.
    Nakamura T; Aoki K; Matsuda M
    Methods; 2005 Oct; 37(2):146-53. PubMed ID: 16288890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Ras and Rap activation in living cells using fluorescent Ras binding domains.
    Bivona TG; Philips MR
    Methods; 2005 Oct; 37(2):138-45. PubMed ID: 16289969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organelle-specific, rapid induction of molecular activities and membrane tethering.
    Komatsu T; Kukelyansky I; McCaffery JM; Ueno T; Varela LC; Inoue T
    Nat Methods; 2010 Mar; 7(3):206-8. PubMed ID: 20154678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pan-GTPase Inhibitor as a Molecular Probe.
    Hong L; Guo Y; BasuRay S; Agola JO; Romero E; Simpson DS; Schroeder CE; Simons P; Waller A; Garcia M; Carter M; Ursu O; Gouveia K; Golden JE; Aubé J; Wandinger-Ness A; Sklar LA
    PLoS One; 2015; 10(8):e0134317. PubMed ID: 26247207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections.
    Kornmann B; Osman C; Walter P
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14151-6. PubMed ID: 21825164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling enzymatic action in living cells with a kinase-inducible bimolecular switch.
    Sample V; Ni Q; Mehta S; Inoue T; Zhang J
    ACS Chem Biol; 2013 Jan; 8(1):116-21. PubMed ID: 23072367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis.
    Zunino R; Braschi E; Xu L; McBride HM
    J Biol Chem; 2009 Jun; 284(26):17783-95. PubMed ID: 19411255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of the Rab5 cycle on macropinosomes.
    Feliciano WD; Yoshida S; Straight SW; Swanson JA
    Traffic; 2011 Dec; 12(12):1911-22. PubMed ID: 21910808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to study signaling at the Golgi apparatus.
    Reitere V; Baschieri F; Millarte V; Farhan H
    Methods Cell Biol; 2013; 118():345-58. PubMed ID: 24295317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB.
    Murga C; Zohar M; Teramoto H; Gutkind JS
    Oncogene; 2002 Jan; 21(2):207-16. PubMed ID: 11803464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.