These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22999936)
1. Role of unusual P loop ejection and autophosphorylation in HipA-mediated persistence and multidrug tolerance. Schumacher MA; Min J; Link TM; Guan Z; Xu W; Ahn YH; Soderblom EJ; Kurie JM; Evdokimov A; Moseley MA; Lewis K; Brennan RG Cell Rep; 2012 Sep; 2(3):518-25. PubMed ID: 22999936 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanism of bacterial persistence by HipA. Germain E; Castro-Roa D; Zenkin N; Gerdes K Mol Cell; 2013 Oct; 52(2):248-54. PubMed ID: 24095282 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Schumacher MA; Piro KM; Xu W; Hansen S; Lewis K; Brennan RG Science; 2009 Jan; 323(5912):396-401. PubMed ID: 19150849 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation-Competent Metastable State of Pandey B; Sinha K; Dev A; Ganguly HK; Polley S; Chakrabarty S; Basu G Biochemistry; 2023 Mar; 62(5):989-999. PubMed ID: 36802529 [TBL] [Abstract][Full Text] [Related]
5. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. Correia FF; D'Onofrio A; Rejtar T; Li L; Karger BL; Makarova K; Koonin EV; Lewis K J Bacteriol; 2006 Dec; 188(24):8360-7. PubMed ID: 17041039 [TBL] [Abstract][Full Text] [Related]
6. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Schumacher MA; Balani P; Min J; Chinnam NB; Hansen S; Vulić M; Lewis K; Brennan RG Nature; 2015 Aug; 524(7563):59-64. PubMed ID: 26222023 [TBL] [Abstract][Full Text] [Related]
7. ATP and autophosphorylation driven conformational changes of HipA kinase revealed by ion mobility and crosslinking mass spectrometry. Wen Y; Sobott F; Devreese B Anal Bioanal Chem; 2016 Aug; 408(21):5925-5933. PubMed ID: 27325463 [TBL] [Abstract][Full Text] [Related]
8. The kinases HipA and HipA7 phosphorylate different substrate pools in Semanjski M; Germain E; Bratl K; Kiessling A; Gerdes K; Macek B Sci Signal; 2018 Sep; 11(547):. PubMed ID: 30206139 [TBL] [Abstract][Full Text] [Related]
9. Serine-Threonine Kinases Encoded by Split Vang Nielsen S; Turnbull KJ; Roghanian M; Bærentsen R; Semanjski M; Brodersen DE; Macek B; Gerdes K mBio; 2019 Jun; 10(3):. PubMed ID: 31213559 [TBL] [Abstract][Full Text] [Related]
10. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. Madec E; Stensballe A; Kjellström S; Cladière L; Obuchowski M; Jensen ON; Séror SJ J Mol Biol; 2003 Jul; 330(3):459-72. PubMed ID: 12842463 [TBL] [Abstract][Full Text] [Related]
12. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Kaspy I; Rotem E; Weiss N; Ronin I; Balaban NQ; Glaser G Nat Commun; 2013; 4():3001. PubMed ID: 24343429 [TBL] [Abstract][Full Text] [Related]
13. Evidence that phosphorylation of threonine in the GT motif triggers activation of PknA, a eukaryotic-type serine/threonine kinase from Mycobacterium tuberculosis. Ravala SK; Singh S; Yadav GS; Kumar S; Karthikeyan S; Chakraborti PK FEBS J; 2015 Apr; 282(8):1419-31. PubMed ID: 25665034 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Gruszczyński P; Obuchowski M; Kaźmierkiewicz R J Comput Aided Mol Des; 2010 Sep; 24(9):733-47. PubMed ID: 20563625 [TBL] [Abstract][Full Text] [Related]
15. Role of T-loop phosphorylation in PDK1 activation, stability, and substrate binding. Komander D; Kular G; Deak M; Alessi DR; van Aalten DM J Biol Chem; 2005 May; 280(19):18797-802. PubMed ID: 15741170 [TBL] [Abstract][Full Text] [Related]
16. E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. Gratani FL; Englert T; Nashier P; Sass P; Czech L; Neumann N; Doello S; Mann P; Blobelt R; Alberti S; Forchhammer K; Bange G; Höfer K; Macek B mSystems; 2023 Feb; 8(1):e0104322. PubMed ID: 36537800 [TBL] [Abstract][Full Text] [Related]
17. Substitution of the autophosphorylation site Thr516 with a negatively charged residue confers constitutive activity to mouse 3-phosphoinositide-dependent protein kinase-1 in cells. Wick MJ; Wick KR; Chen H; He H; Dong LQ; Quon MJ; Liu F J Biol Chem; 2002 May; 277(19):16632-8. PubMed ID: 11877406 [TBL] [Abstract][Full Text] [Related]
18. The carboxyl terminus of protein kinase c provides a switch to regulate its interaction with the phosphoinositide-dependent kinase, PDK-1. Gao T; Toker A; Newton AC J Biol Chem; 2001 Jun; 276(22):19588-96. PubMed ID: 11376011 [TBL] [Abstract][Full Text] [Related]
19. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. McCartney RR; Garnar-Wortzel L; Chandrashekarappa DG; Schmidt MC Biochim Biophys Acta; 2016 Nov; 1864(11):1518-28. PubMed ID: 27524664 [TBL] [Abstract][Full Text] [Related]
20. Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha' subunits: implication of Tyr182. Donella-Deana A; Cesaro L; Sarno S; Brunati AM; Ruzzene M; Pinna LA Biochem J; 2001 Jul; 357(Pt 2):563-7. PubMed ID: 11439109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]