BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23000212)

  • 1. Solid-state electron transport in Mn-, Co-, holo-, and Cu-ferritins: force-induced modulation is inversely linked to the protein conductivity.
    Rakshit T; Mukhopadhyay R
    J Colloid Interface Sci; 2012 Dec; 388(1):282-92. PubMed ID: 23000212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning band gap of holoferritin by metal core reconstitution with Cu, Co, and Mn.
    Rakshit T; Mukhopadhyay R
    Langmuir; 2011 Aug; 27(16):9681-6. PubMed ID: 21755951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale mechano-electronic behavior of a metalloprotein as a variable of metal content.
    Rakshit T; Banerjee S; Mishra S; Mukhopadhyay R
    Langmuir; 2013 Oct; 29(40):12511-9. PubMed ID: 24028412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical conductivity of ferritin proteins by conductive AFM.
    Xu D; Watt GD; Harb JN; Davis RC
    Nano Lett; 2005 Apr; 5(4):571-7. PubMed ID: 15826089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution.
    Jeong GH; Yamazaki A; Suzuki S; Yoshimura H; Kobayashi Y; Homma Y
    J Am Chem Soc; 2005 Jun; 127(23):8238-9. PubMed ID: 15941229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-metallic behavior of warm holoferritin molecules on a gold(111) surface.
    Rakshit T; Banerjee S; Mukhopadhyay R
    Langmuir; 2010 Oct; 26(20):16005-12. PubMed ID: 20866028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface differentiation of ferritin and apoferritin with atomic force microscopic techniques.
    Ho RH; Chen YH; Wang CM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():231-5. PubMed ID: 22377219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale On-Silico Electron Transport via Ferritins.
    Bera S; Kolay J; Banerjee S; Mukhopadhyay R
    Langmuir; 2017 Feb; 33(8):1951-1958. PubMed ID: 28145712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin.
    Zhang B; Harb JN; Davis RC; Kim JW; Chu SH; Choi S; Miller T; Watt GD
    Inorg Chem; 2005 May; 44(10):3738-45. PubMed ID: 15877458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron exchange between Fe(II)-horse spleen ferritin and Co(III)/Mn(III) reconstituted horse spleen and Azotobacter vinelandii ferritins.
    Zhang B; Harb JN; Davis RC; Choi S; Kim JW; Miller T; Chu SH; Watt GD
    Biochemistry; 2006 May; 45(18):5766-74. PubMed ID: 16669620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron and cobalt oxide and metallic nanoparticles prepared from ferritin.
    Hosein HA; Strongin DR; Allen M; Douglas T
    Langmuir; 2004 Nov; 20(23):10283-7. PubMed ID: 15518526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins.
    Meldrum FC; Douglas T; Levi S; Arosio P; Mann S
    J Inorg Biochem; 1995 Apr; 58(1):59-68. PubMed ID: 7738539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins.
    Zhao Z; Malik A; Lee ML; Watt GD
    Anal Biochem; 1994 Apr; 218(1):47-54. PubMed ID: 8053567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.
    Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R
    Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers.
    Kashanian S; Rafipour R; Tarighat FA; Ravan H
    IET Nanobiotechnol; 2012 Sep; 6(3):102-9. PubMed ID: 22894534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study.
    Meltzer HM; Brantsaeter AL; Borch-Iohnsen B; Ellingsen DG; Alexander J; Thomassen Y; Stigum H; Ydersbond TA
    Environ Res; 2010 Jul; 110(5):497-504. PubMed ID: 20381026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of iron storage protein on a gold electrode based on self-assembled monolayers.
    Won K; Park MJ; Yoon HH; Kim JH
    Ultramicroscopy; 2008 Sep; 108(10):1342-7. PubMed ID: 18571860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Differential Resistance Behavior of the Iron Storage Protein Ferritin.
    Kolay J; Bera S; Rakshit T; Mukhopadhyay R
    Langmuir; 2018 Mar; 34(9):3126-3135. PubMed ID: 29412680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).
    AbouEl-Enein SA; El-Saied FA; Kasher TI; El-Wardany AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):737-43. PubMed ID: 17113342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.