These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 23000217)
1. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. Manavalan T; Manavalan A; Thangavelu KP; Heese K J Proteomics; 2012 Dec; 77():298-309. PubMed ID: 23000217 [TBL] [Abstract][Full Text] [Related]
2. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. Adav SS; Ravindran A; Sze SK J Proteomics; 2012 Feb; 75(5):1493-504. PubMed ID: 22146477 [TBL] [Abstract][Full Text] [Related]
3. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. de Gouvêa PF; Bernardi AV; Gerolamo LE; de Souza Santos E; Riaño-Pachón DM; Uyemura SA; Dinamarco TM BMC Genomics; 2018 Apr; 19(1):232. PubMed ID: 29614953 [TBL] [Abstract][Full Text] [Related]
5. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063 [TBL] [Abstract][Full Text] [Related]
6. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724 [TBL] [Abstract][Full Text] [Related]
7. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases. Beukes N; Pletschke BI Bioresour Technol; 2010 Jun; 101(12):4472-8. PubMed ID: 20156678 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of pH and strains dependent protein secretion of Trichoderma reesei. Adav SS; Ravindran A; Chao LT; Tan L; Singh S; Sze SK J Proteome Res; 2011 Oct; 10(10):4579-96. PubMed ID: 21879708 [TBL] [Abstract][Full Text] [Related]
9. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Alokika ; Anu ; Kumar A; Kumar V; Singh B Int J Biol Macromol; 2021 Feb; 169():564-582. PubMed ID: 33385447 [TBL] [Abstract][Full Text] [Related]
10. Secretomic analysis of cheap enzymatic cocktails of Díaz GV; Coniglio RO; Alvarenga AE; Zapata PD; Villalba LL; Fonseca MI Mycologia; 2020; 112(4):663-676. PubMed ID: 32574526 [TBL] [Abstract][Full Text] [Related]
11. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass. Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of Chrysoporthe cubensis exoproteomes and their specificity for saccharification of sugarcane bagasse. Tavares MP; Morgan T; Gomes RF; Mendes JPR; Castro-Borges W; Maitan-Alfenas GP; Guimarães VM Enzyme Microb Technol; 2024 Feb; 173():110365. PubMed ID: 38043248 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414 [TBL] [Abstract][Full Text] [Related]
14. Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Deswal D; Gupta R; Nandal P; Kuhad RC Carbohydr Polym; 2014 Jan; 99():264-9. PubMed ID: 24274505 [TBL] [Abstract][Full Text] [Related]
15. An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles. Kang Y; Realff MJ; Sohn M; Lee JH; Bommarius AS Biotechnol Prog; 2015; 31(1):25-34. PubMed ID: 25311613 [TBL] [Abstract][Full Text] [Related]
16. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Xie C; Luo W; Li Z; Yan L; Zhu Z; Wang J; Hu Z; Peng Y Electrophoresis; 2016 Jan; 37(2):310-20. PubMed ID: 26525014 [TBL] [Abstract][Full Text] [Related]
17. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin. Du FL; Du QS; Dai J; Tang PD; Li YM; Long SY; Xie NZ; Wang QY; Huang RB PLoS One; 2018; 13(6):e0197188. PubMed ID: 29856735 [TBL] [Abstract][Full Text] [Related]
18. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis. Tavares MP; Morgan T; Gomes RF; Rodrigues MQRB; Castro-Borges W; de Rezende ST; de Oliveira Mendes TA; Guimarães VM J Proteomics; 2021 Mar; 236():104121. PubMed ID: 33540065 [TBL] [Abstract][Full Text] [Related]
20. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Hill J; Nelson E; Tilman D; Polasky S; Tiffany D Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]